1887

Abstract

Direct-acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed. Lipid metabolism is closely linked with hepatitis C virus (HCV) replication, and endocannabinoids are major regulators of lipid homeostasis. The cannabinoid 1 (CB1) receptor mediates these effects in the liver. We have previously shown upregulation of CB1 receptors in the livers of patients with CHC, and in a HCV cell-culture model. Here, we investigated whether CB1 blockade inhibited HCV replication. The antiviral effect of a CB1 antagonist, -(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), was examined in HCV strain JFH1 cell-culture and subgenomic replicon models. The effects on the expression of genes involved in lipid metabolism were also measured. CB1 short hairpin RNA (shRNA) was used to confirm that the effects were specific for the cannabinoid receptor. Treatment with AM251 strongly inhibited HCV RNA (~70 %), viral protein (~80 %), the production of new virus particles (~70 %) and virus infectivity (~90 %). As expected, AM251 reduced the expression of pro-lipogenic genes (SREBP-1c, FASN, SCD1 and ACC1) and stimulated genes promoting lipid oxidation (CPT1 and PPARα). This effect was mediated by AMP-activated protein kinase (AMPK). Stable CB1 knockdown of cells infected with HCV showed reduced levels of HCV RNA compared with controls. Thus, reduced CB1 signalling inhibits HCV replication using either pharmacological inhibitors or CB1 shRNA. This may be due, at least in part, to reduced lipogenesis, mediated by AMPK activation. We suggest that CB1 antagonists may represent an entirely new class of drug with activity against HCV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.067231-0
2014-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/11/2468.html?itemId=/content/journal/jgv/10.1099/vir.0.067231-0&mimeType=html&fmt=ahah

References

  1. Aizaki H., Lee K. J., Sung V. M., Ishiko H., Lai M. M.. ( 2004;). Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. . Virology 324:, 450–461. [CrossRef][PubMed]
    [Google Scholar]
  2. Amemiya F., Maekawa S., Itakura Y., Kanayama A., Matsui A., Takano S., Yamaguchi T., Itakura J., Kitamura T.. & other authors ( 2008;). Targeting lipid metabolism in the treatment of hepatitis C virus infection. . J Infect Dis 197:, 361–370. [CrossRef][PubMed]
    [Google Scholar]
  3. Bassendine M. F., Sheridan D. A., Bridge S. H., Felmlee D. J., Neely R. D.. ( 2013;). Lipids and HCV. . Semin Immunopathol 35:, 87–100. [CrossRef][PubMed]
    [Google Scholar]
  4. Carrère-Kremer S., Montpellier C., Lorenzo L., Brulin B., Cocquerel L., Belouzard S., Penin F., Dubuisson J.. ( 2004;). Regulation of hepatitis C virus polyprotein processing by signal peptidase involves structural determinants at the p7 sequence junctions. . J Biol Chem 279:, 41384–41392. [CrossRef][PubMed]
    [Google Scholar]
  5. Cheng F. K. F., Torres D. M., Harrison S. A.. ( 2014;). Hepatitis C and lipid metabolism, hepatic steatosis, and NAFLD: still important in the era of direct acting antiviral therapy?. J Viral Hepat 21:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  6. Christopoulou F. D., Kiortsis D. N.. ( 2011;). An overview of the metabolic effects of rimonabant in randomized controlled trials: potential for other cannabinoid 1 receptor blockers in obesity. . J Clin Pharm Ther 36:, 10–18. [CrossRef][PubMed]
    [Google Scholar]
  7. Cluny N. L., Vemuri V. K., Chambers A. P., Limebeer C. L., Bedard H., Wood J. T., Lutz B., Zimmer A., Parker L. A.. & other authors ( 2010;). A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. . Br J Pharmacol 161:, 629–642. [CrossRef][PubMed]
    [Google Scholar]
  8. Engeli S., Böhnke J., Feldpausch M., Gorzelniak K., Janke J., Bátkai S., Pacher P., Harvey-White J., Luft F. C.. & other authors ( 2005;). Activation of the peripheral endocannabinoid system in human obesity. . Diabetes 54:, 2838–2843. [CrossRef][PubMed]
    [Google Scholar]
  9. FDA ( 2007;). U.S. Food and Drug Administration Advisory Committee. FDA briefing document: zimulti (rimonabant) tablets, 20 mg. . http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4306b1-00-index.htm, Rockville. [Accessed 6 August 2007.]
    [Google Scholar]
  10. Fried M. W., Shiffman M. L., Reddy K. R., Smith C., Marinos G., Gonçales F. L. Jr, Häussinger D., Diago M., Carosi G.. & other authors ( 2002;). Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. . N Engl J Med 347:, 975–982. [CrossRef][PubMed]
    [Google Scholar]
  11. Gastaminza P., Kapadia S. B., Chisari F. V.. ( 2006;). Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. . J Virol 80:, 11074–11081. [CrossRef][PubMed]
    [Google Scholar]
  12. Gastaminza P., Cheng G., Wieland S., Zhong J., Liao W., Chisari F. V.. ( 2008;). Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. . J Virol 82:, 2120–2129. [CrossRef][PubMed]
    [Google Scholar]
  13. Hardie D. G., Pan D. A.. ( 2002;). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. . Biochem Soc Trans 30:, 1064–1070. [CrossRef][PubMed]
    [Google Scholar]
  14. Hézode C., Zafrani E. S., Roudot-Thoraval F., Costentin C., Hessami A., Bouvier-Alias M., Medkour F., Pawlostky J. M., Lotersztajn S., Mallat A.. ( 2008;). Daily cannabis use: a novel risk factor of steatosis severity in patients with chronic hepatitis C. . Gastroenterology 134:, 432–439. [CrossRef][PubMed]
    [Google Scholar]
  15. Hollander P. A., Amod A., Litwak L. E., Chaudhari U..ARPEGGIO Study Group ( 2010;). Effect of rimonabant on glycemic control in insulin-treated type 2 diabetes: the ARPEGGIO trial. . Diabetes Care 33:, 605–607. [CrossRef][PubMed]
    [Google Scholar]
  16. Jacobson I. M., Gordon S. C., Kowdley K. V., Yoshida E. M., Rodriguez-Torres M., Sulkowski M. S., Shiffman M. L., Lawitz E., Everson G.. & other authors ( 2013;). Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. . N Engl J Med 368:, 1867–1877. [CrossRef][PubMed]
    [Google Scholar]
  17. Jeong W. I., Osei-Hyiaman D., Park O., Liu J., Bátkai S., Mukhopadhyay P., Horiguchi N., Harvey-White J., Marsicano G.. & other authors ( 2008;). Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. . Cell Metab 7:, 227–235. [CrossRef][PubMed]
    [Google Scholar]
  18. Kato T., Date T., Miyamoto M., Furusaka A., Tokushige K., Mizokami M., Wakita T.. ( 2003;). Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. . Gastroenterology 125:, 1808–1817. [CrossRef][PubMed]
    [Google Scholar]
  19. Klumpers L. E., Fridberg M., de Kam M. L., Little P. B., Jensen N. O., Kleinloog H. D., Elling C. E., van Gerven J. M. A.. ( 2013;). Peripheral selectivity of the novel cannabinoid receptor antagonist TM38837 in healthy subjects. . Br J Clin Pharmacol 76:, 846–857. [CrossRef][PubMed]
    [Google Scholar]
  20. Lawitz E., Gane E. J.. ( 2013;). Sofosbuvir for previously untreated chronic hepatitis C infection. . N Engl J Med 369:, 678–679. [CrossRef][PubMed]
    [Google Scholar]
  21. Li Y., Xu S., Mihaylova M. M., Zheng B., Hou X., Jiang B., Park O., Luo Z., Lefai E.. & other authors ( 2011;). AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. . Cell Metab 13:, 376–388. [CrossRef][PubMed]
    [Google Scholar]
  22. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R.. & other authors ( 2005;). Complete replication of hepatitis C virus in cell culture. . Science 309:, 623–626. [CrossRef][PubMed]
    [Google Scholar]
  23. Lindenbach B. D., Meuleman P., Ploss A., Vanwolleghem T., Syder A. J., McKeating J. A., Lanford R. E., Feinstone S. M., Major M. E.. & other authors ( 2006;). Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. . Proc Natl Acad Sci U S A 103:, 3805–3809. [CrossRef][PubMed]
    [Google Scholar]
  24. Mankouri J., Tedbury P. R., Gretton S., Hughes M. E., Griffin S. D. C., Dallas M. L., Green K. A., Hardie D. G., Peers C., Harris M.. ( 2010;). Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. . Proc Natl Acad Sci U S A 107:, 11549–11554. [CrossRef][PubMed]
    [Google Scholar]
  25. Manns M. P., McHutchison J. G., Gordon S. C., Rustgi V. K., Shiffman M., Reindollar R., Goodman Z. D., Koury K., Ling M.-H., Albrecht J. K.. ( 2001;). Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. . Lancet 358:, 958–965. [CrossRef][PubMed]
    [Google Scholar]
  26. Moreira F. A., Grieb M., Lutz B.. ( 2009;). Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. . Best Pract Res Clin Endocrinol Metab 23:, 133–144. [CrossRef][PubMed]
    [Google Scholar]
  27. Moser T. S., Schieffer D., Cherry S.. ( 2012;). AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. . PLoS Pathog 8:, e1002661. [CrossRef][PubMed]
    [Google Scholar]
  28. Nakashima K., Takeuchi K., Chihara K., Hotta H., Sada K.. ( 2011;). Inhibition of hepatitis C virus replication through adenosine monophosphate-activated protein kinase-dependent and -independent pathways. . Microbiol Immunol 55:, 774–782. [CrossRef][PubMed]
    [Google Scholar]
  29. Negro F.. ( 2010;). Abnormalities of lipid metabolism in hepatitis C virus infection. . Gut 59:, 1279–1287. [CrossRef][PubMed]
    [Google Scholar]
  30. Olmstead A. D., Knecht W., Lazarov I., Dixit S. B., Jean F.. ( 2012;). Human subtilase SKI-1/S1P is a master regulator of the HCV lifecycle and a potential host cell target for developing indirect-acting antiviral agents. . PLoS Pathog 8:, e1002468. [CrossRef][PubMed]
    [Google Scholar]
  31. Osei-Hyiaman D., DePetrillo M., Pacher P., Liu J., Radaeva S., Bátkai S., Harvey-White J., Mackie K., Offertáler L.. & other authors ( 2005;). Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. . J Clin Invest 115:, 1298–1305. [CrossRef][PubMed]
    [Google Scholar]
  32. Osei-Hyiaman D., Liu J., Zhou L., Godlewski G., Harvey-White J., Jeong W. I., Bátkai S., Marsicano G., Lutz B.. & other authors ( 2008;). Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. . J Clin Invest 118:, 3160–3169. [CrossRef][PubMed]
    [Google Scholar]
  33. Pacher P., Bátkai S., Kunos G.. ( 2006;). The endocannabinoid system as an emerging target of pharmacotherapy. . Pharmacol Rev 58:, 389–462. [CrossRef][PubMed]
    [Google Scholar]
  34. Pawlotsky J.-M.. ( 2011;). Treatment failure and resistance with direct-acting antiviral drugs against hepatitis C virus. . Hepatology 53:, 1742–1751. [CrossRef][PubMed]
    [Google Scholar]
  35. Pawlotsky J.-M.. ( 2014;). What are the pros and cons of the use of host-targeted agents against hepatitis C?. Antiviral Res 105:, 22–25. [CrossRef][PubMed]
    [Google Scholar]
  36. Pereira A. A., Jacobson I. M.. ( 2009;). New and experimental therapies for HCV. . Nat Rev Gastroenterol Hepatol 6:, 403–411. [CrossRef][PubMed]
    [Google Scholar]
  37. Poordad F., McCone J. Jr, Bacon B. R., Bruno S., Manns M. P., Sulkowski M. S., Jacobson I. M., Reddy K. R., Goodman Z. D.. & other authors ( 2011;). Boceprevir for untreated chronic HCV genotype 1 infection. . N Engl J Med 364:, 1195–1206. [CrossRef][PubMed]
    [Google Scholar]
  38. Ruby M. A., Nomura D. K., Hudak C. S. S., Barber A., Casida J. E., Krauss R. M.. ( 2011;). Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes. . PLoS ONE 6:, e26415. [CrossRef][PubMed]
    [Google Scholar]
  39. Serrano A., Del Arco I., Javier Pavón F., Macías M., Perez-Valero V., Rodríguez de Fonseca F.. ( 2008;). The cannabinoid CB1 receptor antagonist SR141716A (Rimonabant) enhances the metabolic benefits of long-term treatment with oleoylethanolamide in Zucker rats. . Neuropharmacology 54:, 226–234. [CrossRef][PubMed]
    [Google Scholar]
  40. Serrano A., Pavon F. J., Suarez J., Romero-Cuevas M., Baixeras E., Goya P., Fonseca F. R.. ( 2012;). Obesity and the endocannabinoid system: is there still a future for CB11 antagonists in obesity. . Curr Obes Rep 1:, 216–228. [CrossRef]
    [Google Scholar]
  41. Syed G. H., Amako Y., Siddiqui A.. ( 2010;). Hepatitis C virus hijacks host lipid metabolism. . Trends Endocrinol Metab 21:, 33–40. [CrossRef][PubMed]
    [Google Scholar]
  42. Tam J., Vemuri V. K., Liu J., Bátkai S., Mukhopadhyay B., Godlewski G., Osei-Hyiaman D., Ohnuma S., Ambudkar S. V.. & other authors ( 2010;). Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. . J Clin Invest 120:, 2953–2966. [CrossRef][PubMed]
    [Google Scholar]
  43. Targett-Adams P., McLauchlan J.. ( 2005;). Development and characterization of a transient-replication assay for the genotype 2a hepatitis C virus subgenomic replicon. . J Gen Virol 86:, 3075–3080. [CrossRef][PubMed]
    [Google Scholar]
  44. Tedesco L., Valerio A., Cervino C., Cardile A., Pagano C., Vettor R., Pasquali R., Carruba M. O., Marsicano G.. & other authors ( 2008;). Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes. . Diabetes 57:, 2028–2036. [CrossRef][PubMed]
    [Google Scholar]
  45. van der Poorten D., Shahidi M., Tay E., Sesha J., Tran K., McLeod D., Milliken J. S., Ho V., Hebbard L. W.. & other authors ( 2010;). Hepatitis C virus induces the cannabinoid receptor 1. . PLoS ONE 5:, e12841. [CrossRef][PubMed]
    [Google Scholar]
  46. Van Gaal L., Pi-Sunyer X., Després J.-P., McCarthy C., Scheen A.. ( 2008;). Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: pooled 1-year data from the Rimonabant in Obesity (RIO) program. . Diabetes Care 31: (Suppl 2), S229–S240. [CrossRef][PubMed]
    [Google Scholar]
  47. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H.-G.. & other authors ( 2005;). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. . Nat Med 11:, 791–796. [CrossRef][PubMed]
    [Google Scholar]
  48. Watanabe T., Kubota N., Ohsugi M., Kubota T., Takamoto I., Iwabu M., Awazawa M., Katsuyama H., Hasegawa C.. & other authors ( 2009;). Rimonabant ameliorates insulin resistance via both adiponectin-dependent and adiponectin-independent pathways. . J Biol Chem 284:, 1803–1812. [CrossRef][PubMed]
    [Google Scholar]
  49. Wu H. M., Yang Y. M., Kim S. G.. ( 2011;). Rimonabant, a cannabinoid receptor type 1 inverse agonist, inhibits hepatocyte lipogenesis by activating liver kinase B1 and AMP-activated protein kinase axis downstream of Gα i/o inhibition. . Mol Pharmacol 80:, 859–869. [CrossRef][PubMed]
    [Google Scholar]
  50. Yamaguchi A., Tazuma S., Nishioka T., Ohishi W., Hyogo H., Nomura S., Chayama K.. ( 2005;). Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. . Dig Dis Sci 50:, 1361–1371. [CrossRef][PubMed]
    [Google Scholar]
  51. Zeuzem S., Andreone P., Pol S., Lawitz E., Diago M., Roberts S., Focaccia R., Younossi Z., Foster G. R.. & other authors ( 2011;). Telaprevir for retreatment of HCV infection. . N Engl J Med 364:, 2417–2428. [CrossRef][PubMed]
    [Google Scholar]
  52. Zeuzem S., Berg T., Gane E., Ferenci P., Foster G. R., Fried M. W., Hezode C., Hirschfield G. M., Jacobson I.. & other authors ( 2014;). Simeprevir increases rate of sustained virologic response among treatment-experienced patients with HCV genotype-1 infection: a phase IIb trial. . Gastroenterology 146:, 430–441, e6. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.067231-0
Loading
/content/journal/jgv/10.1099/vir.0.067231-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error