1887

Abstract

A major research priority for HIV eradication is the elucidation of the events involved in HIV reservoir establishment and persistence. Cell-to-cell transmission of HIV represents an important area of study as it allows for the infection of cell types which are not easily infected by HIV, leading to the establishment of long-lived viral reservoirs. This phenomenon enables HIV to escape elimination by the immune system. This process may also enable HIV to escape suppressive effects of anti-retroviral drugs. During cell-to-cell transmission of HIV, a dynamic series of events ensues at the virological synapse that promotes viral dissemination. Cell-to-cell transmission involves various types of cells of the immune system and this mode of transmission has been shown to have an important role in sexual and mother-to-child transmission of HIV and spread of HIV within the central nervous system and gut-associated lymphoid tissues. There is also evidence that cell-to-cell transmission of HIV occurs between thymocytes and renal tubular cells. Herein, following a brief review of the processes involved at the virological synapse, evidence supporting the role for cell-to-cell transmission of HIV in the maintenance of the HIV reservoir will be highlighted. Therapeutic considerations and future directions for this area of research will also be discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.069641-0
2014-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/11/2346.html?itemId=/content/journal/jgv/10.1099/vir.0.069641-0&mimeType=html&fmt=ahah

References

  1. Agosto L. M., Zhong P., Munro J., Mothes W.. ( 2014;). Highly active antiretroviral therapies are effective against HIV-1 cell-to-cell transmission. . PLoS Pathog 10:, e1003982. [CrossRef][PubMed]
    [Google Scholar]
  2. Albright A. V., Soldan S. S., González-Scarano F.. ( 2003;). Pathogenesis of human immunodeficiency virus-induced neurological disease. . J Neurovirol 9:, 222–227. [CrossRef][PubMed]
    [Google Scholar]
  3. Alexaki A., Wigdahl B.. ( 2008;). HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination. . PLoS Pathog 4:, e1000215. [CrossRef][PubMed]
    [Google Scholar]
  4. Arias R. A., Muñoz L. D., Muñoz-Fernández M. A.. ( 2003;). Transmission of HIV-1 infection between trophoblast placental cells and T-cells take place via an LFA-1-mediated cell to cell contact. . Virology 307:, 266–277. [CrossRef][PubMed]
    [Google Scholar]
  5. Arrighi J. F., Pion M., Garcia E., Escola J. M., van Kooyk Y., Geijtenbeek T. B., Piguet V.. ( 2004;). DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. . J Exp Med 200:, 1279–1288. [CrossRef][PubMed]
    [Google Scholar]
  6. Becquart P., Chomont N., Roques P., Ayouba A., Kazatchkine M. D., Bélec L., Hocini H.. ( 2002;). Compartmentalization of HIV-1 between breast milk and blood of HIV-infected mothers. . Virology 300:, 109–117. [CrossRef][PubMed]
    [Google Scholar]
  7. Best B. M., Letendre S. L., Brigid E., Clifford D. B., Collier A. C., Gelman B. B., McArthur J. C., McCutchan J. A., Simpson D. M.. & other authors ( 2009;). Low atazanavir concentrations in cerebrospinal fluid. . AIDS 23:, 83–87. [CrossRef][PubMed]
    [Google Scholar]
  8. Best B. M., Letendre S. L., Koopmans P., Rossi S. S., Clifford D. B., Collier A. C., Gelman B. B., Marra C. M., McArthur J. C.. & other authors ( 2012;). Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. . J Acquir Immune Defic Syndr 59:, 376–381. [CrossRef][PubMed]
    [Google Scholar]
  9. Beyrer C.. ( 2007;). HIV epidemiology update and transmission factors: risks and risk contexts 16th International AIDS Conference epidemiology plenary. . Clin Infect Dis 44:, 981–987. [CrossRef][PubMed]
    [Google Scholar]
  10. Blackard J. T.. ( 2012;). HIV compartmentalization: a review on a clinically important phenomenon. . Curr HIV Res 10:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  11. Blankson J. N., Persaud D., Siliciano R. F.. ( 2002;). The challenge of viral reservoirs in HIV-1 infection. . Annu Rev Med 53:, 557–593. [CrossRef][PubMed]
    [Google Scholar]
  12. Bosch B., Grigorov B., Senserrich J., Clotet B., Darlix J. L., Muriaux D., Este J. A.. ( 2008;). A clathrin–dynamin-dependent endocytic pathway for the uptake of HIV-1 by direct T cell–T cell transmission. . Antiviral Res 80:, 185–193. [CrossRef][PubMed]
    [Google Scholar]
  13. Bousso P., Robey E.. ( 2003;). Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. . Nat Immunol 4:, 579–585. [CrossRef][PubMed]
    [Google Scholar]
  14. Brenchley J. M., Schacker T. W., Ruff L. E., Price D. A., Taylor J. H., Beilman G. J., Nguyen P. L., Khoruts A., Larson M.. & other authors ( 2004;). CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. . J Exp Med 200:, 749–759. [CrossRef][PubMed]
    [Google Scholar]
  15. Brenchley J. M., Price D. A., Schacker T. W., Asher T. E., Silvestri G., Rao S., Kazzaz Z., Bornstein E., Lambotte O.. & other authors ( 2006;). Microbial translocation is a cause of systemic immune activation in chronic HIV infection. . Nat Med 12:, 1365–1371. [CrossRef][PubMed]
    [Google Scholar]
  16. Bukrinsky M. I., Stanwick T. L., Dempsey M. P., Stevenson M.. ( 1991;). Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. . Science 254:, 423–427. [CrossRef][PubMed]
    [Google Scholar]
  17. Burkhardt J. K., Carrizosa E., Shaffer M. H.. ( 2008;). The actin cytoskeleton in T cell activation. . Annu Rev Immunol 26:, 233–259. [CrossRef][PubMed]
    [Google Scholar]
  18. Cameron P. U., Lowe M. G., Sotzik F., Coughlan A. F., Crowe S. M., Shortman K.. ( 1996;). The interaction of macrophage and non-macrophage tropic isolates of HIV-1 with thymic and tonsillar dendritic cells in vitro. . J Exp Med 183:, 1851–1856. [CrossRef][PubMed]
    [Google Scholar]
  19. Canestri A., Lescure F. X., Jaureguiberry S., Moulignier A., Amiel C., Marcelin A. G., Peytavin G., Tubiana R., Pialoux G., Katlama C.. ( 2010;). Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. . Clin Infect Dis 50:, 773–778. [CrossRef][PubMed]
    [Google Scholar]
  20. Carr J. M., Hocking H., Li P., Burrell C. J.. ( 1999;). Rapid and efficient cell-to-cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes. . Virology 265:, 319–329. [CrossRef][PubMed]
    [Google Scholar]
  21. Chen P., Hübner W., Spinelli M. A., Chen B. K.. ( 2007;). Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. . J Virol 81:, 12582–12595. [CrossRef][PubMed]
    [Google Scholar]
  22. Chen J. Y., Feeney E. R., Chung R. T.. ( 2014;). HCV and HIV co-infection: mechanisms and management. . Nat Rev Gastroenterol Hepatol 11:, 362–371. [CrossRef][PubMed]
    [Google Scholar]
  23. Cheynier R., Henrichwark S., Hadida F., Pelletier E., Oksenhendler E., Autran B., Wain-Hobson S.. ( 1994;). HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. . Cell 78:, 373–387. [CrossRef][PubMed]
    [Google Scholar]
  24. Chomont N., El-Far M., Ancuta P., Trautmann L., Procopio F. A., Yassine-Diab B., Boucher G., Boulassel M. R., Ghattas G.. & other authors ( 2009;). HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. . Nat Med 15:, 893–900. [CrossRef][PubMed]
    [Google Scholar]
  25. Chun T. W., Carruth L., Finzi D., Shen X., DiGiuseppe J. A., Taylor H., Hermankova M., Chadwick K., Margolick J.. & other authors ( 1997;). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. . Nature 387:, 183–188. [CrossRef][PubMed]
    [Google Scholar]
  26. Chun T. W., Davey R. T. Jr, Ostrowski M., Shawn Justement J., Engel D., Mullins J. I., Fauci A. S.. ( 2000;). Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. . Nat Med 6:, 757–761. [CrossRef][PubMed]
    [Google Scholar]
  27. Chun T. W., Nickle D. C., Justement J. S., Meyers J. H., Roby G., Hallahan C. W., Kottilil S., Moir S., Mican J. M.. & other authors ( 2008;). Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. . J Infect Dis 197:, 714–720. [CrossRef][PubMed]
    [Google Scholar]
  28. Chun T. W., Justement J. S., Murray D., Hallahan C. W., Maenza J., Collier A. C., Sheth P. M., Kaul R., Ostrowski M.. & other authors ( 2010;). Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication. . AIDS 24:, 2803–2808. [CrossRef][PubMed]
    [Google Scholar]
  29. Cicala C., Arthos J., Fauci A. S.. ( 2010;). HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. . J Transl Med 9: (Suppl. 1), S2. [CrossRef][PubMed]
    [Google Scholar]
  30. Coleman C. M., Wu L.. ( 2009;). HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. . Retrovirology 6:, 51. [CrossRef][PubMed]
    [Google Scholar]
  31. Collman R. G., Perno C. F., Crowe S. M., Stevenson M., Montaner L. J.. ( 2003;). HIV and cells of macrophage/dendritic lineage and other non-T cell reservoirs: new answers yield new questions. . J Leukoc Biol 74:, 631–634. [CrossRef][PubMed]
    [Google Scholar]
  32. Costiniuk C. T., Jenabian M. A.. ( 2014;). The lungs as anatomical reservoirs of HIV infection. . Rev Med Virol 24:, 35–54. [CrossRef][PubMed]
    [Google Scholar]
  33. Crowe S. M., Mills J., Kirihara J., Boothman J., Marshall J. A., McGrath M. S.. ( 1990;). Full-length recombinant CD4 and recombinant gp120 inhibit fusion between HIV infected macrophages and uninfected CD4-expressing T-lymphoblastoid cells. . AIDS Res Hum Retroviruses 6:, 1031–1037.[PubMed]
    [Google Scholar]
  34. Crowe S. M., Mills J., Elbeik T., Lifson J. D., Kosek J., Marshall J. A., Engleman E. G., McGrath M. S.. ( 1992;). Human immunodeficiency virus-infected monocyte-derived macrophages express surface GP120 and fuse with CD4 lymphoid cells in vitro: a possible mechanism of T lymphocyte depletion in vivo. . Clin Immunol Immunopathol 65:, 143–151. [CrossRef][PubMed]
    [Google Scholar]
  35. Dale B. M., McNerney G. P., Thompson D. L., Hubner W., de Los Reyes K., Chuang F. Y., Huser T., Chen B. K.. ( 2011;). Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. . Cell Host Microbe 10:, 551–562. [CrossRef][PubMed]
    [Google Scholar]
  36. Davey R. T. Jr, Bhat N., Yoder C., Chun T. W., Metcalf J. A., Dewar R., Natarajan V., Lempicki R. A., Adelsberger J. W.. & other authors ( 1999;). HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. . Proc Natl Acad Sci U S A 96:, 15109–15114. [CrossRef][PubMed]
    [Google Scholar]
  37. Del Portillo A., Tripodi J., Najfeld V., Wodarz D., Levy D. N., Chen B. K.. ( 2011;). Multiploid inheritance of HIV-1 during cell-to-cell infection. . J Virol 85:, 7169–7176. [CrossRef][PubMed]
    [Google Scholar]
  38. Dezzutti C. S., Guenthner P. C., Cummins J. E. Jr, Cabrera T., Marshall J. H., Dillberger A., Lal R. B.. ( 2001;). Cervical and prostate primary epithelial cells are not productively infected but sequester human immunodeficiency virus type 1. . J Infect Dis 183:, 1204–1213. [CrossRef][PubMed]
    [Google Scholar]
  39. Dorosko S. M., Connor R. I.. ( 2010;). Primary human mammary epithelial cells endocytose HIV-1 and facilitate viral infection of CD4+ T lymphocytes. . J Virol 84:, 10533–10542. [CrossRef][PubMed]
    [Google Scholar]
  40. Durham N. D., Yewdall A. W., Chen P., Lee R., Zony C., Robinson J. E., Chen B. K.. ( 2012;). Neutralization resistance of virological synapse-mediated HIV-1 infection is regulated by the gp41 cytoplasmic tail. . J Virol 86:, 7484–7495. [CrossRef][PubMed]
    [Google Scholar]
  41. Evans V. A., Lal L., Akkina R., Solomon A., Wright E., Lewin S. R., Cameron P. U.. ( 2011;). Thymic plasmacytoid dendritic cells are susceptible to productive HIV-1 infection and efficiently transfer R5 HIV-1 to thymocytes in vitro. . Retrovirology 8:, 43. [CrossRef][PubMed]
    [Google Scholar]
  42. Feldmann J., Schwartz O.. ( 2010;). HIV-1 virological synapse: live imaging of transmission. . Viruses 2:, 1666–1680. [CrossRef][PubMed]
    [Google Scholar]
  43. Felts R. L., Narayan K., Estes J. D., Shi D., Trubey C. M., Fu J., Hartnell L. M., Ruthel G. T., Schneider D. K.. & other authors ( 2010;). 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. . Proc Natl Acad Sci U S A 107:, 13336–13341. [CrossRef][PubMed]
    [Google Scholar]
  44. Ferrari G., Pollara J., Kozink D., Harms T., Drinker M., Freel S., Moody M. A., Alam S. M., Tomaras G. D.. & other authors ( 2011;). An HIV-1 gp120 envelope human monoclonal antibody that recognizes a C1 conformational epitope mediates potent antibody-dependent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1 serum. . J Virol 85:, 7029–7036. [CrossRef][PubMed]
    [Google Scholar]
  45. Ganor Y., Zhou Z., Tudor D., Schmitt A., Vacher-Lavenu M. C., Gibault L., Thiounn N., Tomasini J., Wolf J. P., Bomsel M.. ( 2010;). Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans–T cell conjugates. . Mucosal Immunol 3:, 506–522. [CrossRef][PubMed]
    [Google Scholar]
  46. Garcia E., Pion M., Pelchen-Matthews A., Collinson L., Arrighi J. F., Blot G., Leuba F., Escola J. M., Demaurex N.. & other authors ( 2005;). HIV-1 trafficking to the dendritic cell–T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. . Traffic 6:, 488–501. [CrossRef][PubMed]
    [Google Scholar]
  47. Gartner S.. ( 2000;). HIV infection and dementia. . Science 287:, 602–604. [CrossRef][PubMed]
    [Google Scholar]
  48. Geijtenbeek T. B., Torensma R., van Vliet S. J., van Duijnhoven G. C., Adema G. J., van Kooyk Y., Figdor C. G.. ( 2000;). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. . Cell 100:, 575–585. [CrossRef][PubMed]
    [Google Scholar]
  49. Gelderblom H. C., Vatakis D. N., Burke S. A., Lawrie S. D., Bristol G. C., Levy D. N.. ( 2008;). Viral complementation allows HIV-1 replication without integration. . Retrovirology 5:, 60. [CrossRef][PubMed]
    [Google Scholar]
  50. Girard M. M. J., Rimsky L., Barre-Sinoussi F., Muchmore E., Weinhold K., Fultz P.. ( 1992;). HIV-1 genital infection: a chimpanzee model. . In Septième Colloque des Cent Gardes, pp. 75–79. Edited by Girard M., Valette L... Lyon;: Fondation Marcel Merieux:.
    [Google Scholar]
  51. Groot F., Welsch S., Sattentau Q. J.. ( 2008;). Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. . Blood 111:, 4660–4663. [CrossRef][PubMed]
    [Google Scholar]
  52. Guadalupe M., Reay E., Sankaran S., Prindiville T., Flamm J., McNeil A., Dandekar S.. ( 2003;). Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. . J Virol 77:, 11708–11717. [CrossRef][PubMed]
    [Google Scholar]
  53. Haase A. T.. ( 1999;). Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. . Annu Rev Immunol 17:, 625–656. [CrossRef][PubMed]
    [Google Scholar]
  54. Harouse J. M., Kunsch C., Hartle H. T., Laughlin M. A., Hoxie J. A., Wigdahl B., Gonzalez-Scarano F.. ( 1989;). CD4-independent infection of human neural cells by human immunodeficiency virus type 1. . J Virol 63:, 2527–2533.[PubMed]
    [Google Scholar]
  55. Heaton R. K., Franklin D. R., Ellis R. J., McCutchan J. A., Letendre S. L., Leblanc S., Corkran S. H., Duarte N. A., Clifford D. B.. & other authors ( 2011;). HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. . J Neurovirol 17:, 3–16. [CrossRef][PubMed]
    [Google Scholar]
  56. Hioe C. E., Bastiani L., Hildreth J. E., Zolla-Pazner S.. ( 1998;). Role of cellular adhesion molecules in HIV type 1 infection and their impact on virus neutralization. . AIDS Res Hum Retroviruses 14: (Suppl. 3), S247–S254.[PubMed]
    [Google Scholar]
  57. Hübner W., McNerney G. P., Chen P., Dale B. M., Gordon R. E., Chuang F. Y., Li X. D., Asmuth D. M., Huser T., Chen B. K.. ( 2009;). Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. . Science 323:, 1743–1747. [CrossRef][PubMed]
    [Google Scholar]
  58. Ibata B., Parr E. L., King N. J., Parr M. B.. ( 1997;). Migration of foreign lymphocytes from the mouse vagina into the cervicovaginal mucosa and to the iliac lymph nodes. . Biol Reprod 56:, 537–543. [CrossRef][PubMed]
    [Google Scholar]
  59. Ince W. L., Harrington P. R., Schnell G. L., Patel-Chhabra M., Burch C. L., Menezes P., Price R. W., Eron J. J. Jr, Swanstrom R. I.. ( 2009;). Major coexisting human immunodeficiency virus type 1 env gene subpopulations in the peripheral blood are produced by cells with similar turnover rates and show little evidence of genetic compartmentalization. . J Virol 83:, 4068–4080. [CrossRef][PubMed]
    [Google Scholar]
  60. Jolly C., Kashefi K., Hollinshead M., Sattentau Q. J.. ( 2004;). HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. . J Exp Med 199:, 283–293. [CrossRef][PubMed]
    [Google Scholar]
  61. Jolly C., Welsch S., Michor S., Sattentau Q. J.. ( 2011;). The regulated secretory pathway in CD4+ T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse. . PLoS Pathog 7:, e1002226. [CrossRef][PubMed]
    [Google Scholar]
  62. Jung A., Maier R., Vartanian J. P., Bocharov G., Jung V., Fischer U., Meese E., Wain-Hobson S., Meyerhans A.. ( 2002;). Recombination: multiply infected spleen cells in HIV patients. . Nature 418:, 144. [CrossRef][PubMed]
    [Google Scholar]
  63. Kadiu I., Gendelman H. E.. ( 2011;). Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. . J Neuroimmune Pharmacol 6:, 658–675. [CrossRef][PubMed]
    [Google Scholar]
  64. Keele B. F., Tazi L., Gartner S., Liu Y., Burgon T. B., Estes J. D., Thacker T. C., Crandall K. A., McArthur J. C., Burton G. F.. ( 2008;). Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. . J Virol 82:, 5548–5561. [CrossRef][PubMed]
    [Google Scholar]
  65. Kim R. B., Fromm M. F., Wandel C., Leake B., Wood A. J., Roden D. M., Wilkinson G. R.. ( 1998;). The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. . J Clin Invest 101:, 289–294. [CrossRef][PubMed]
    [Google Scholar]
  66. Kolodkin-Gal D., Hulot S. L., Korioth-Schmitz B., Gombos R. B., Zheng Y., Owuor J., Lifton M. A., Ayeni C., Najarian R. M.. & other authors ( 2013;). Efficiency of cell-free and cell-associated virus in mucosal transmission of human immunodeficiency virus type 1 and simian immunodeficiency virus. . J Virol 87:, 13589–13597. [CrossRef][PubMed]
    [Google Scholar]
  67. Kolson D. L., Lavi E., González-Scarano F.. ( 1998;). The effects of human immunodeficiency virus in the central nervous system. . Adv Virus Res 50:, 1–47. [CrossRef][PubMed]
    [Google Scholar]
  68. Koppensteiner H., Banning C., Schneider C., Hohenberg H., Schindler M.. ( 2012;). Macrophage internal HIV-1 is protected from neutralizing antibodies. . J Virol 86:, 2826–2836. [CrossRef][PubMed]
    [Google Scholar]
  69. Krementsov D. N., Weng J., Lambelé M., Roy N. H., Thali M.. ( 2009;). Tetraspanins regulate cell-to-cell transmission of HIV-1. . Retrovirology 6:, 64. [CrossRef][PubMed]
    [Google Scholar]
  70. Le Tortorec A., Le Grand R., Denis H., Satie A. P., Mannioui K., Roques P., Maillard A., Daniels S., Jégou B., Dejucq-Rainsford N.. ( 2008;). Infection of semen-producing organs by SIV during the acute and chronic stages of the disease. . PLoS ONE 3:, e1792. [CrossRef][PubMed]
    [Google Scholar]
  71. Lehman D. A., Chung M. H., John-Stewart G. C., Richardson B. A., Kiarie J., Kinuthia J., Overbaugh J.. ( 2008;). HIV-1 persists in breast milk cells despite antiretroviral treatment to prevent mother-to-child transmission. . AIDS 22:, 1475–1485. [CrossRef][PubMed]
    [Google Scholar]
  72. Lehmann M., Nikolic D. S., Piguet V.. ( 2011;). How HIV-1 takes advantage of the cytoskeleton during replication and cell-to-cell transmission. . Viruses 3:, 1757–1776. [CrossRef][PubMed]
    [Google Scholar]
  73. Liu Y., Liu H., Kim B. O., Gattone V. H., Li J., Nath A., Blum J., He J. J.. ( 2004;). CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor. . J Virol 78:, 4120–4133. [CrossRef][PubMed]
    [Google Scholar]
  74. Llewellyn G. N., Hogue I. B., Grover J. R., Ono A.. ( 2010;). Nucleocapsid promotes localization of HIV-1 Gag to uropods that participate in virological synapses between T cells. . PLoS Pathog 6:, e1001167. [CrossRef][PubMed]
    [Google Scholar]
  75. Maher D., Wu X., Schacker T., Horbul J., Southern P.. ( 2005;). HIV binding, penetration, and primary infection in human cervicovaginal tissue. . Proc Natl Acad Sci U S A 102:, 11504–11509. [CrossRef][PubMed]
    [Google Scholar]
  76. Malbec M., Porrot F., Rua R., Horwitz J., Klein F., Halper-Stromberg A., Scheid J. F., Eden C., Mouquet H.. & other authors ( 2013;). Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. . J Exp Med 210:, 2813–2821. [CrossRef][PubMed]
    [Google Scholar]
  77. Martin N., Welsch S., Jolly C., Briggs J. A., Vaux D., Sattentau Q. J.. ( 2010;). Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. . J Virol 84:, 3516–3527. [CrossRef][PubMed]
    [Google Scholar]
  78. Martín-Fontecha A., Lanzavecchia A., Sallusto F.. ( 2009;). Dendritic cell migration to peripheral lymph nodes. . Handbook Exp Pharmacol 188:, 31–49. [CrossRef][PubMed]
    [Google Scholar]
  79. Mehandru S.. ( 2012;). The gastrointestinal tract in HIV-1. Questions, answers and more questions. http://www.prn.org/index/php/progression/article/hiv_1_gastrointestinal_galt_267 (Accessed 14 January 2013.)
    [Google Scholar]
  80. Mikulak J., Teichberg S., Faust T., Schmidtmayerova H., Singhal P. C.. ( 2009;). HIV-1 harboring renal tubular epithelial cell interaction with T cells results in T cell trans-infection. . Virology 385:, 105–114. [CrossRef][PubMed]
    [Google Scholar]
  81. Miller M. J., Hejazi A. S., Wei S. H., Cahalan M. D., Parker I.. ( 2004;). T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. . Proc Natl Acad Sci U S A 101:, 998–1003. [CrossRef][PubMed]
    [Google Scholar]
  82. Milush J. M., Kosub D., Marthas M., Schmidt K., Scott F., Wozniakowski A., Brown C., Westmoreland S., Sodora D. L.. ( 2004;). Rapid dissemination of SIV following oral inoculation. . AIDS 18:, 2371–2380.[PubMed]
    [Google Scholar]
  83. Milush J. M., Stefano-Cole K., Schmidt K., Durudas A., Pandrea I., Sodora D. L.. ( 2007;). Mucosal innate immune response associated with a timely humoral immune response and slower disease progression after oral transmission of simian immunodeficiency virus to rhesus macaques. . J Virol 81:, 6175–6186. [CrossRef][PubMed]
    [Google Scholar]
  84. Miyauchi K., Kim Y., Latinovic O., Morozov V., Melikyan G. B.. ( 2009;). HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. . Cell 137:, 433–444. [CrossRef][PubMed]
    [Google Scholar]
  85. Mowat A. M., Viney J. L.. ( 1997;). The anatomical basis of intestinal immunity. . Immunol Rev 156:, 145–166. [CrossRef][PubMed]
    [Google Scholar]
  86. Orenstein J. M., Fox C., Wahl S. M.. ( 1997;). Macrophages as a source of HIV during opportunistic infections. . Science 276:, 1857–1861. [CrossRef][PubMed]
    [Google Scholar]
  87. Paine M. F., Hart H. L., Ludington S. S., Haining R. L., Rettie A. E., Zeldin D. C.. ( 2006;). The human intestinal cytochrome P450 “pie”. . Drug Metab Dispos 34:, 880–886. [CrossRef][PubMed]
    [Google Scholar]
  88. Pearce-Pratt R., Phillips D. M.. ( 1993;). Studies of adhesion of lymphocytic cells: implications for sexual transmission of human immunodeficiency virus. . Biol Reprod 48:, 431–445. [CrossRef][PubMed]
    [Google Scholar]
  89. Permar S. R., Kang H. H., Wilks A. B., Mach L. V., Carville A., Mansfield K. G., Learn G. H., Hahn B. H., Letvin N. L.. ( 2010;). Local replication of simian immunodeficiency virus in the breast milk compartment of chronically-infected, lactating rhesus monkeys. . Retrovirology 7:, 7. [CrossRef][PubMed]
    [Google Scholar]
  90. Piguet V., Sattentau Q.. ( 2004;). Dangerous liaisons at the virological synapse. . J Clin Invest 114:, 605–610. [CrossRef][PubMed]
    [Google Scholar]
  91. Redel L., Le Douce V., Cherrier T., Marban C., Janossy A., Aunis D., Van Lint C., Rohr O., Schwartz C.. ( 2010;). HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. . J Leukoc Biol 87:, 575–588. [CrossRef][PubMed]
    [Google Scholar]
  92. Rudnicka D., Feldmann J., Porrot F., Wietgrefe S., Guadagnini S., Prévost M. C., Estaquier J., Haase A. T., Sol-Foulon N., Schwartz O.. ( 2009;). Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. . J Virol 83:, 6234–6246. [CrossRef][PubMed]
    [Google Scholar]
  93. Sáez-Cirión A., Bacchus C., Hocqueloux L., Avettand-Fenoel V., Girault I., Lecuroux C., Potard V., Versmisse P., Melard A.. & other authors ( 2013;). Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. . PLoS Pathog 9:, e1003211. [CrossRef][PubMed]
    [Google Scholar]
  94. Sagar M., Akiyama H., Etemad B., Ramirez N., Freitas I., Gummuluru S.. ( 2012;). Transmembrane domain membrane proximal external region but not surface unit-directed broadly neutralizing HIV-1 antibodies can restrict dendritic cell-mediated HIV-1 trans-infection. . J Infect Dis 205:, 1248–1257. [CrossRef][PubMed]
    [Google Scholar]
  95. Sallé B., Brochard P., Bourry O., Mannioui A., Andrieu T., Prevot S., Dejucq-Rainsford N., Dereuddre-Bosquet N., Le Grand R.. ( 2010;). Infection of macaques after vaginal exposure to cell-associated simian immunodeficiency virus. . J Infect Dis 202:, 337–344. [CrossRef][PubMed]
    [Google Scholar]
  96. Schiffner T., Sattentau Q. J., Duncan C. J.. ( 2013;). Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies. . Vaccine 31:, 5789–5797. [CrossRef][PubMed]
    [Google Scholar]
  97. Shapiro R. L., Ndung’u T., Lockman S., Smeaton L. M., Thior I., Wester C., Stevens L., Sebetso G., Gaseitsiwe S.. & other authors ( 2005;). Highly active antiretroviral therapy started during pregnancy or postpartum suppresses HIV-1 RNA, but not DNA, in breast milk. . J Infect Dis 192:, 713–719. [CrossRef][PubMed]
    [Google Scholar]
  98. Sharova N., Swingler C., Sharkey M., Stevenson M.. ( 2005;). Macrophages archive HIV-1 virions for dissemination in trans. . EMBO J 24:, 2481–2489. [CrossRef][PubMed]
    [Google Scholar]
  99. Sigal A., Kim J. T., Balazs A. B., Dekel E., Mayo A., Milo R., Baltimore D.. ( 2011;). Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. . Nature 477:, 95–98. [CrossRef][PubMed]
    [Google Scholar]
  100. Slobod K. S., Bennett T. A., Freiden P. J., Kechli A. M., Howlett N., Flynn P. M., Head D. R., Srivastava D. K., Boyett J. M.. & other authors ( 1996;). Mobilization of CD34+ progenitor cells by granulocyte colony-stimulating factor in human immunodeficiency virus type 1-infected adults. . Blood 88:, 3329–3335.[PubMed]
    [Google Scholar]
  101. Sourisseau M., Sol-Foulon N., Porrot F., Blanchet F., Schwartz O.. ( 2007;). Inefficient human immunodeficiency virus replication in mobile lymphocytes. . J Virol 81:, 1000–1012. [CrossRef][PubMed]
    [Google Scholar]
  102. Sowinski S., Jolly C., Berninghausen O., Purbhoo M. A., Chauveau A., Köhler K., Oddos S., Eissmann P., Brodsky F. M.. & other authors ( 2008;). Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. . Nat Cell Biol 10:, 211–219. [CrossRef][PubMed]
    [Google Scholar]
  103. Spudich S., Lollo N., Liegler T., Deeks S. G., Price R. W.. ( 2006;). Treatment benefit on cerebrospinal fluid HIV-1 levels in the setting of systemic virological suppression and failure. . J Infect Dis 194:, 1686–1696. [CrossRef][PubMed]
    [Google Scholar]
  104. Tang S., Patterson B., Levy J. A.. ( 1995;). Highly purified quiescent human peripheral blood CD4+ T cells are infectible by human immunodeficiency virus but do not release virus after activation. . J Virol 69:, 5659–5665.[PubMed]
    [Google Scholar]
  105. Turville S. G., Aravantinou M., Stössel H., Romani N., Robbiani M.. ( 2008;). Resolution of de novo HIV production and trafficking in immature dendritic cells. . Nat Methods 5:, 75–85. [CrossRef][PubMed]
    [Google Scholar]
  106. Vacharaksa A., Asrani A. C., Gebhard K. H., Fasching C. E., Giacaman R. A., Janoff E. N., Ross K. F., Herzberg M. C.. ( 2008;). Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells. . Retrovirology 5:, 66. [CrossRef][PubMed]
    [Google Scholar]
  107. Valentin A., Rosati M., Patenaude D. J., Hatzakis A., Kostrikis L. G., Lazanas M., Wyvill K. M., Yarchoan R., Pavlakis G. N.. ( 2002;). Persistent HIV-1 infection of natural killer cells in patients receiving highly active antiretroviral therapy. . Proc Natl Acad Sci U S A 99:, 7015–7020. [CrossRef][PubMed]
    [Google Scholar]
  108. van Sighem A. I., Gras L. A., Reiss P., Brinkman K., de Wolf F..ATHENA National Observational Cohort Study ( 2010;). Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. . AIDS 24:, 1527–1535. [CrossRef][PubMed]
    [Google Scholar]
  109. Vasiliver-Shamis G., Tuen M., Wu T. W., Starr T., Cameron T. O., Thomson R., Kaur G., Liu J., Visciano M. L.. & other authors ( 2008;). Human immunodeficiency virus type 1 envelope gp120 induces a stop signal and virological synapse formation in noninfected CD4+ T cells. . J Virol 82:, 9445–9457. [CrossRef][PubMed]
    [Google Scholar]
  110. Wang J. H., Janas A. M., Olson W. J., Wu L.. ( 2007;). Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. . J Virol 81:, 8933–8943. [CrossRef][PubMed]
    [Google Scholar]
  111. Yilmaz A., Price R. W., Spudich S., Fuchs D., Hagberg L., Gisslén M.. ( 2008;). Persistent intrathecal immune activation in HIV-1-infected individuals on antiretroviral therapy. . J Acquir Immune Defic Syndr 47:, 168–173. [CrossRef][PubMed]
    [Google Scholar]
  112. Zhang Q. Y., Dunbar D., Ostrowska A., Zeisloft S., Yang J., Kaminsky L. S.. ( 1999;). Characterization of human small intestinal cytochromes P-450. . Drug Metab Dispos 27:, 804–809.[PubMed]
    [Google Scholar]
  113. Zhong P., Agosto L. M., Ilinskaya A., Dorjbal B., Truong R., Derse D., Uchil P. D., Heidecker G., Mothes W.. ( 2013;). Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. . PLoS ONE 8:, e53138. [CrossRef][PubMed]
    [Google Scholar]
  114. Zhou Z., Barry de Longchamps N., Schmitt A., Zerbib M., Vacher-Lavenu M. C., Bomsel M., Ganor Y.. ( 2011;). HIV-1 efficient entry in inner foreskin is mediated by elevated CCL5/RANTES that recruits T cells and fuels conjugate formation with Langerhans cells. . PLoS Pathog 7:, e1002100. [CrossRef][PubMed]
    [Google Scholar]
  115. Zhu T., Muthui D., Holte S., Nickle D., Feng F., Brodie S., Hwangbo Y., Mullins J. I., Corey L.. ( 2002;). Evidence for human immunodeficiency virus type 1 replication in vivo in CD14+ monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy. . J Virol 76:, 707–716. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.069641-0
Loading
/content/journal/jgv/10.1099/vir.0.069641-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error