1887

Abstract

Whole-virus (WV) vaccines from influenza A/duck/Hokkaido/77 (H3N2), and its reassortant strains H3N4, H3N5 and H3N7, which have the same haemagglutinin (HA) gene but different neuraminidase (NA) genes, were prepared from our influenza virus library. Mice were intranasally immunized with equivalent doses of each vaccine (1–0.01 µg per mouse). All of the mice that received the highest dose of each vaccine (1 µg per mouse) showed equivalent high HA-inhibiting (HI) antibody titres and survived the H3N2 challenge viruses. However, mice that received lower doses of vaccine (0.1 or 0.01 µg per mouse) containing a heterologous NA had lower survival rates than those given the H3N2-based vaccine. The lungs of mice challenged with H3N2 virus showed a significantly higher virus clearance rate when the vaccine contained the homologous NA (N2) versus a heterologous NA, suggesting that NA contributed to the protection, especially when the HI antibody level was low. These results suggested that, even if vaccines prepared for a possible upcoming pandemic do not induce sufficient HI antibodies, WV vaccines can still be effective through other matched proteins such as NA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.067488-0
2014-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/11/2365.html?itemId=/content/journal/jgv/10.1099/vir.0.067488-0&mimeType=html&fmt=ahah

References

  1. Avellaneda G., Sylte M. J., Lee C. W., Suarez D. L.. ( 2010;). A heterologous neuraminidase subtype strategy for the differentiation of infected and vaccinated animals (DIVA) for avian influenza virus using an alternative neuraminidase inhibition test. . Avian Dis 54: (Suppl), 272–277. [CrossRef][PubMed]
    [Google Scholar]
  2. Beato M. S., Rigoni M., Milani A., Capua I.. ( 2007;). Generation of avian influenza reassortant viruses of the H7N5 subtype as potential vaccine candidates to be used in the framework of a “DIVA” vaccination strategy. . Avian Dis 51: (Suppl), 479–480. [CrossRef][PubMed]
    [Google Scholar]
  3. Black S., Nicolay U., Vesikari T., Knuf M., Del Giudice G., Della Cioppa G., Tsai T., Clemens R., Rappuoli R.. ( 2011;). Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. . Pediatr Infect Dis J 30:, 1081–1085. [CrossRef][PubMed]
    [Google Scholar]
  4. Capua I., Terregino C., Cattoli G., Mutinelli F., Rodriguez J. F.. ( 2003;). Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza. . Avian Pathol 32:, 47–55. [CrossRef][PubMed]
    [Google Scholar]
  5. Cottey R., Rowe C. A., Bender B. S.. ( 2001;). Influenza virus. . Curr Protoc Immunol 42:, 19.11.1–19.11.32. [CrossRef][PubMed]
    [Google Scholar]
  6. Couch R. B., Atmar R. L., Franco L. M., Quarles J. M., Wells J., Arden N., Niño D., Belmont J. W.. ( 2013;). Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. . J Infect Dis 207:, 974–981. [CrossRef][PubMed]
    [Google Scholar]
  7. Coudeville L., Bailleux F., Riche B., Megas F., Andre P., Ecochard R.. ( 2010;). Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model. . BMC Med Res Methodol 10:, 18. [CrossRef][PubMed]
    [Google Scholar]
  8. Cox N. J., Subbarao K.. ( 1999;). Influenza. . Lancet 354:, 1277–1282. [CrossRef][PubMed]
    [Google Scholar]
  9. Cox M. M., Patriarca P. A., Treanor J.. ( 2008;). FluBlok, a recombinant hemagglutinin influenza vaccine. . Influenza Other Respi Viruses 2:, 211–219. [CrossRef][PubMed]
    [Google Scholar]
  10. FDA CBER ( 2007;). Guidance for Industry: Clinical Data Needed to Support the Licensure of Seasonal Inactivated Influenza Vaccines. Rockville, MD:: US DHHS;.
    [Google Scholar]
  11. Fritz R., Sabarth N., Kiermayr S., Hohenadl C., Howard M. K., Ilk R., Kistner O., Ehrlich H. J., Barrett P. N., Kreil T. R.. ( 2012;). A Vero cell-derived whole-virus H5N1 vaccine effectively induces neuraminidase-inhibiting antibodies. . J Infect Dis 205:, 28–34. [CrossRef][PubMed]
    [Google Scholar]
  12. Gamblin S. J., Skehel J. J.. ( 2010;). Influenza hemagglutinin and neuraminidase membrane glycoproteins. . J Biol Chem 285:, 28403–28409. [CrossRef][PubMed]
    [Google Scholar]
  13. Haredy A. M., Takenaka N., Yamada H., Sakoda Y., Okamatsu M., Yamamoto N., Omasa T., Ohtake H., Mori Y.. & other authors ( 2013;). An MDCK cell culture-derived formalin-inactivated influenza virus whole-virion vaccine from an influenza virus library confers cross-protective immunity by intranasal administration in mice. . Clin Vaccine Immunol 20:, 998–1007. [CrossRef][PubMed]
    [Google Scholar]
  14. Isoda N., Sakoda Y., Kishida N., Soda K., Sakabe S., Sakamoto R., Imamura T., Sakaguchi M., Sasaki T.. & other authors ( 2008;). Potency of an inactivated avian influenza vaccine prepared from a non-pathogenic H5N1 reassortant virus generated between isolates from migratory ducks in Asia. . Arch Virol 153:, 1685–1692. [CrossRef][PubMed]
    [Google Scholar]
  15. Itoh Y., Ozaki H., Tsuchiya H., Okamoto K., Torii R., Sakoda Y., Kawaoka Y., Ogasawara K., Kida H.. ( 2008;). A vaccine prepared from a non-pathogenic H5N1 avian influenza virus strain confers protective immunity against highly pathogenic avian influenza virus infection in cynomolgus macaques. . Vaccine 26:, 562–572. [CrossRef][PubMed]
    [Google Scholar]
  16. Johansson B. E., Cox M. M.. ( 2011;). Influenza viral neuraminidase: the forgotten antigen. . Expert Rev Vaccines 10:, 1683–1695. [CrossRef][PubMed]
    [Google Scholar]
  17. Johansson B. E., Moran T. M., Bona C. A., Kilbourne E. D.. ( 1987;). Immunologic response to influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. III. Reduced generation of neuraminidase-specific helper T cells in hemagglutinin-primed mice. . J Immunol 139:, 2015–2019.[PubMed]
    [Google Scholar]
  18. Kendal A. P., Bozeman F. M., Ennis F. A.. ( 1980;). Further studies of the neuraminidase content of inactivated influenza vaccines and the neuraminidase antibody responses after vaccination of immunologically primed and unprimed populations. . Infect Immun 29:, 966–971.[PubMed]
    [Google Scholar]
  19. Kida H., Sakoda Y.. ( 2006;). Library of influenza virus strains for vaccine and diagnostic use against highly pathogenic avian influenza and human pandemics. . Dev Biol (Basel) 124:, 69–72.[PubMed]
    [Google Scholar]
  20. Kida H., Webster R. G., Yanagawa R.. ( 1983;). Inhibition of virus-induced hemolysis with monoclonal antibodies to different antigenic areas on the hemagglutinin molecule of A/seal/Massachusetts/1/80 (H7N7) influenza virus. . Arch Virol 76:, 91–99. [CrossRef][PubMed]
    [Google Scholar]
  21. Kilbourne E. D.. ( 2006a;). Influenza immunity: new insights from old studies. . J Infect Dis 193:, 7–8. [CrossRef][PubMed]
    [Google Scholar]
  22. Kilbourne E. D.. ( 2006b;). Influenza pandemics of the 20th century. . Emerg Infect Dis 12:, 9–14. [CrossRef][PubMed]
    [Google Scholar]
  23. Kilbourne E. D., Cerini C. P., Khan M. W., Mitchell J. W. Jr, Ogra P. L.. ( 1987;). Immunologic response to the influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. I. Studies in human vaccinees. . J Immunol 138:, 3010–3013.[PubMed]
    [Google Scholar]
  24. Kilbourne E. D., Couch R. B., Kasel J. A., Keitel W. A., Cate T. R., Quarles J. H., Grajower B., Pokorny B. A., Johansson B. E.. ( 1995;). Purified influenza A virus N2 neuraminidase vaccine is immunogenic and non-toxic in humans. . Vaccine 13:, 1799–1803. [CrossRef][PubMed]
    [Google Scholar]
  25. Luytjes W., Enouf V., Schipper M., Gijzen K., Liu W. M., van der Lubben M., Meijer A., van der Werf S., Soethout E. C.. ( 2012;). HI responses induced by seasonal influenza vaccination are associated with clinical protection and with seroprotection against non-homologous strains. . Vaccine 30:, 5262–5269. [CrossRef][PubMed]
    [Google Scholar]
  26. Peeters B., de Boer S. M., Tjeerdsma G., Moormann R., Koch G.. ( 2012;). New DIVA vaccine for the protection of poultry against H5 highly pathogenic avian influenza viruses irrespective of the N-subtype. . Vaccine 30:, 7078–7083. [CrossRef][PubMed]
    [Google Scholar]
  27. Rockman S., Brown L. E., Barr I. G., Gilbertson B., Lowther S., Kachurin A., Kachurina O., Klippel J., Bodle J.. & other authors ( 2013;). Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. . J Virol 87:, 3053–3061. [CrossRef][PubMed]
    [Google Scholar]
  28. Samad R. A., Nomura N., Tsuda Y., Manzoor R., Kajihara M., Tomabechi D., Sasaki T., Kokumai N., Ohgitani T.. & other authors ( 2011;). A vaccine prepared from a non-pathogenic H5N1 influenza virus strain from the influenza virus library conferred protective immunity to chickens against the challenge with antigenically drifted highly pathogenic avian influenza virus. . Jpn J Vet Res 59:, 23–29.[PubMed]
    [Google Scholar]
  29. Sandbulte M. R., Jimenez G. S., Boon A. C., Smith L. R., Treanor J. J., Webby R. J.. ( 2007;). Cross-reactive neuraminidase antibodies afford partial protection against H5N1 in mice and are present in unexposed humans. . PLoS Med 4:, e59. [CrossRef][PubMed]
    [Google Scholar]
  30. Seto J. T., Rott R.. ( 1966;). Functional significance of sialidose during influenza virus multiplication. . Virology 30:, 731–737. [CrossRef][PubMed]
    [Google Scholar]
  31. Soda K., Ozaki H., Sakoda Y., Isoda N., Haraguchi Y., Sakabe S., Kuboki N., Kishida N., Takada A., Kida H.. ( 2008a;). Antigenic and genetic analysis of H5 influenza viruses isolated from water birds for the purpose of vaccine use. . Arch Virol 153:, 2041–2048. [CrossRef][PubMed]
    [Google Scholar]
  32. Soda K., Sakoda Y., Isoda N., Kajihara M., Haraguchi Y., Shibuya H., Yoshida H., Sasaki T., Sakamoto R.. & other authors ( 2008b;). Development of vaccine strains of H5 and H7 influenza viruses. . Jpn J Vet Res 55:, 93–98.[PubMed]
    [Google Scholar]
  33. Tamura S., Hasegawa H., Kurata T.. ( 2010;). Estimation of the effective doses of nasal-inactivated influenza vaccine in humans from mouse-model experiments. . Jpn J Infect Dis 63:, 8–15.[PubMed]
    [Google Scholar]
  34. The European Agency for the Evaluation of Medicinal Products Committee for Proprietary Medicinal Products ( 1997;). Note for Guidance on Harmonization of Requirements for Influenza Vaccines. CPMP/BWP/214/96. London:: European Medicines Agency;.
    [Google Scholar]
  35. Valette M., Aymard M.. ( 2002;). Quality control assessment of influenza and RSV testing in Europe: 2000–01 season. . Euro Surveill 7:, 161–165.[PubMed]
    [Google Scholar]
  36. Wang L., Qin Z., Pantin-Jackwood M., Faulkner O., Suarez D. L., Garcia M., Lupiani B., Reddy S. M., Saif Y. M., Lee C. W.. ( 2011;). Development of DIVA (differentiation of infected from vaccinated animals) vaccines utilizing heterologous NA and NS1 protein strategies for the control of triple reassortant H3N2 influenza in turkeys. . Vaccine 29:, 7966–7974. [CrossRef][PubMed]
    [Google Scholar]
  37. Webster R. G., Laver W. G.. ( 1967;). Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. . J Immunol 99:, 49–55.[PubMed]
    [Google Scholar]
  38. Wood J. M., Levandowski R. A.. ( 2003;). The influenza vaccine licensing process. . Vaccine 21:, 1786–1788. [CrossRef][PubMed]
    [Google Scholar]
  39. Yamada H., Moriishi E., Haredy A. M., Takenaka N., Mori Y., Yamanishi K., Okamoto S.. ( 2012;). Influenza virus neuraminidase contributes to the dextran sulfate-dependent suppressive replication of some influenza A virus strains. . Antiviral Res 96:, 344–352. [CrossRef][PubMed]
    [Google Scholar]
  40. Yoden S., Kida H., Kuwabara M., Yanagawa R., Webster R. G.. ( 1986;). Spin-labeling of influenza virus hemagglutinin permits analysis of the conformational change at low pH and its inhibition by antibody. . Virus Res 4:, 251–261. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.067488-0
Loading
/content/journal/jgv/10.1099/vir.0.067488-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error