1887

Abstract

Bone marrow stromal antigen 2 (BST-2; also known as tetherin or CD317) is an IFN-inducible gene that functions to block the release of a range of nascent enveloped virions from infected host cells. However, the role of BST-2 in viral pathogenesis remains poorly understood. BST-2 plays a multifaceted role in innate immunity, as it hinders retroviral infection and possibly promotes infection with some rhabdo- and orthomyxoviruses. This paradoxical role has probably hindered exploration of BST-2 antiviral function . We reported previously that BST-2 tethers Chikungunya virus (CHIKV)-like particles on the cell plasma membrane. To explore the role of BST-2 in CHIKV replication and host protection, we utilized CHIKV strain 181/25 to examine early events during CHIKV infection in a BST-2 mouse model. We observed an interesting dichotomy between WT and BST-2 mice. BST-2 deficiency increased inoculation site viral load, culminating in higher systemic viraemia and increased lymphoid tissues tropism. A suppressed inflammatory innate response demonstrated by impaired expression of IFN-α, IFN-γ and CD40 ligand was observed in BST-2 mice compared with the WT controls. These findings suggested that, in part, BST-2 protects lymphoid tissues from CHIKV infection and regulates CHIKV-induced inflammatory response by the host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068643-0
2014-11-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/11/2450.html?itemId=/content/journal/jgv/10.1099/vir.0.068643-0&mimeType=html&fmt=ahah

References

  1. Arias J. F., Heyer L. N., von Bredow B., Weisgrau K. L., Moldt B., Burton D. R., Rakasz E. G., Evans D. T. 2014; Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 111:6425–6430 [CrossRef][PubMed]
    [Google Scholar]
  2. Blasius A. L., Giurisato E., Cella M., Schreiber R. D., Shaw A. S., Colonna M. 2006; Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol 177:3260–3265 [CrossRef][PubMed]
    [Google Scholar]
  3. Briolant S., Garin D., Scaramozzino N., Jouan A., Crance J. M. 2004; In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: synergistic effect of interferon-alpha and ribavirin combination. Antiviral Res 61:111–117 [CrossRef][PubMed]
    [Google Scholar]
  4. Cao W., Bover L., Cho M., Wen X., Hanabuchi S., Bao M., Rosen D. B., Wang Y. H., Shaw J. L. other authors 2009; Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med 206:1603–1614 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen X. Y., Zhang H. S., Wu T. C., Sang W. W., Ruan Z. 2013; Down-regulation of NAMPT expression by miR-182 is involved in Tat-induced HIV-1 long terminal repeat (LTR) transactivation. Int J Biochem Cell Biol 45:292–298 [CrossRef][PubMed]
    [Google Scholar]
  6. Couderc T., Chrétien F., Schilte C., Disson O., Brigitte M., Guivel-Benhassine F., Touret Y., Barau G., Cayet N. other authors 2008; A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 4:e29 [CrossRef][PubMed]
    [Google Scholar]
  7. Couderc T., Khandoudi N., Grandadam M., Visse C., Gangneux N., Bagot S., Prost J. F., Lecuit M. 2009; Prophylaxis and therapy for Chikungunya virus infection. J Infect Dis 200:516–523 [CrossRef][PubMed]
    [Google Scholar]
  8. Das T., Jaffar-Bandjee M. C., Hoarau J. J., Krejbich Trotot P., Denizot M., Lee-Pat-Yuen G., Sahoo R., Guiraud P., Ramful D., Robin S. 2010; Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol 91:121–129 [CrossRef][PubMed]
    [Google Scholar]
  9. Douglas J. L., Gustin J. K., Viswanathan K., Mansouri M., Moses A. V., Früh K. 2010; The great escape: viral strategies to counter BST-2/tetherin. PLoS Pathog 6:e1000913 [CrossRef][PubMed]
    [Google Scholar]
  10. Du S., Kendall K., Morris S., Sweet C. 2010; Measuring number-concentrations of nanoparticles and viruses in liquids on-line. J Chem Technol Biotechnol 85:1223–1228 [CrossRef]
    [Google Scholar]
  11. Fan S. X., Turpin J. A., Aronovitz J. R., Meltzer M. S. 1994; Interferon-gamma protects primary monocytes against infection with human immunodeficiency virus type 1. J Leukoc Biol 56:362–368[PubMed]
    [Google Scholar]
  12. Filipe V., Jiskoot W., Hawe A. 2011; Understanding virus preparations using nanoscale particle characterization. BioProcess Int 9:44–51 [CrossRef]
    [Google Scholar]
  13. Galão R. P., Le Tortorec A., Pickering S., Kueck T., Neil S. J. 2012; Innate sensing of HIV-1 assembly by Tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe 12:633–644 [CrossRef][PubMed]
    [Google Scholar]
  14. Gardner C. L., Burke C. W., Higgs S. T., Klimstra W. B., Ryman K. D. 2012; Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate. Virology 425:103–112 [CrossRef][PubMed]
    [Google Scholar]
  15. Garten A., Petzold S., Körner A., Imai S. i., Kiess W. 2009; Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab 20:130–138 [CrossRef][PubMed]
    [Google Scholar]
  16. Her Z., Malleret B., Chan M., Ong E. K., Wong S. C., Kwek D. J., Tolou H., Lin R. T., Tambyah P. A. other authors 2010; Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J Immunol 184:5903–5913 [CrossRef][PubMed]
    [Google Scholar]
  17. Hoarau J. J., Jaffar Bandjee M. C., Krejbich Trotot P., Das T., Li-Pat-Yuen G., Dassa B., Denizot M., Guichard E., Ribera A. other authors 2010; Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 184:5914–5927 [CrossRef][PubMed]
    [Google Scholar]
  18. Jones P. H., Okeoma C. M. 2013; Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated BST-2/tetherin regulation. Cell Signal 25:2752–2761 [CrossRef][PubMed]
    [Google Scholar]
  19. Jones P. H., Mehta H. V., Maric M., Roller R. J., Okeoma C. M. 2012; Bone marrow stromal cell antigen 2 (BST-2) restricts mouse mammary tumor virus (MMTV) replication in vivo . Retrovirology 9:10 [CrossRef][PubMed]
    [Google Scholar]
  20. Jones P. H., Mahauad-Fernandez W. D., Madison M. N., Okeoma C. M. 2013a; BST-2/tetherin is overexpressed in mammary gland and tumor tissues in MMTV-induced mammary cancer. Virology 444:124–139 [CrossRef][PubMed]
    [Google Scholar]
  21. Jones P. H., Maric M., Madison M. N., Maury W., Roller R. J., Okeoma C. M. 2013b; BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 438:37–49 [CrossRef][PubMed]
    [Google Scholar]
  22. Kornbluth R. S., Oh P. S., Munis J. R., Cleveland P. H., Richman D. D. 1989; Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro . J Exp Med 169:1137–1151 [CrossRef][PubMed]
    [Google Scholar]
  23. Labadie K., Larcher T., Joubert C., Mannioui A., Delache B., Brochard P., Guigand L., Dubreil L., Lebon P. other authors 2010; Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 120:894–906 [CrossRef][PubMed]
    [Google Scholar]
  24. Levitt N. H., Ramsburg H. H., Hasty S. E., Repik P. M., Cole F. E. Jr, Lupton H. W. 1986; Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4:157–162 [CrossRef][PubMed]
    [Google Scholar]
  25. Liberatore R. A., Bieniasz P. D. 2011; Tetherin is a key effector of the antiretroviral activity of type I interferon in vitro and in vivo . Proc Natl Acad Sci U S A 108:18097–18101 [CrossRef][PubMed]
    [Google Scholar]
  26. Lopez L. A., Yang S. J., Exline C. M., Rengarajan S., Haworth K. G., Cannon P. M. 2012; Anti-tetherin activities of HIV-1 Vpu and Ebola virus glycoprotein do not involve removal of tetherin from lipid rafts. J Virol 86:5467–5480 [CrossRef][PubMed]
    [Google Scholar]
  27. Mackey M. F., Barth R. J. Jr, Noelle R. J. 1998; The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol 63:418–428[PubMed]
    [Google Scholar]
  28. Malvy D., Ezzedine K., Mamani-Matsuda M., Autran B., Tolou H., Receveur M. C., Pistone T., Rambert J., Moynet D., Mossalayi D. 2009; Destructive arthritis in a patient with chikungunya virus infection with persistent specific IgM antibodies. BMC Infect Dis 9:200 [CrossRef][PubMed]
    [Google Scholar]
  29. Mehta H. V., Jones P. H., Weiss J. P., Okeoma C. M. 2012; IFN-α and lipopolysaccharide upregulate APOBEC3 mRNA through different signaling pathways. J Immunol 189:4088–4103 [CrossRef][PubMed]
    [Google Scholar]
  30. Mills J., Chanock V., Chanock R. M. 1971; Temperature-sensitive mutants of influenza virus. I. Behavior in tissue culture and in experimental animals. J Infect Dis 123:145–157 [CrossRef][PubMed]
    [Google Scholar]
  31. Neil S. J., Zang T., Bieniasz P. D. 2008; Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430 [CrossRef][PubMed]
    [Google Scholar]
  32. Olagnier D., Scholte F. E., Chiang C., Albulescu I. C., Nichols C., He Z., Lin R., Snijder E. J., van Hemert M. J., Hiscott J. 2014; Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I IFN-independent stimulation of the innate antiviral response. J Virol 88:4180–4194 [CrossRef][PubMed]
    [Google Scholar]
  33. Otero M., Lago R., Gomez R., Lago F., Dieguez C., Gómez-Reino J. J., Gualillo O. 2006; Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis 65:1198–1201 [CrossRef][PubMed]
    [Google Scholar]
  34. Ozden S., Huerre M., Riviere J. P., Coffey L. L., Afonso P. V., Mouly V., de Monredon J., Roger J. C., El Amrani M. other authors 2007; Human muscle satellite cells as targets of Chikungunya virus infection. PLoS ONE 2:e527 [CrossRef][PubMed]
    [Google Scholar]
  35. Partidos C. D., Weger J., Brewoo J., Seymour R., Borland E. M., Ledermann J. P., Powers A. M., Weaver S. C., Stinchcomb D. T., Osorio J. E. 2011; Probing the attenuation and protective efficacy of a candidate chikungunya virus vaccine in mice with compromised interferon (IFN) signaling. Vaccine 29:3067–3073 [CrossRef][PubMed]
    [Google Scholar]
  36. Pham T. N., Lukhele S., Hajjar F., Routy J. P., Cohen E. A. 2014; HIV Nef and Vpu protect HIV-infected CD4+ T cells from antibody-mediated cell lysis through down-modulation of CD4 and BST2. Retrovirology 11:15 [CrossRef][PubMed]
    [Google Scholar]
  37. Pialoux G., Gaüzère B. A., Jauréguiberry S., Strobel M. 2007; Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7:319–327 [CrossRef][PubMed]
    [Google Scholar]
  38. Powers A. M., Logue C. H. 2007; Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377 [CrossRef][PubMed]
    [Google Scholar]
  39. Radoshitzky S. R., Dong L., Chi X., Clester J. C., Retterer C., Spurgers K., Kuhn J. H., Sandwick S., Ruthel G. other authors 2010; Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin. J Virol 84:10569–10580 [CrossRef][PubMed]
    [Google Scholar]
  40. Rizvi M., Pathak D., Freedman J. E., Chakrabarti S. 2008; CD40–CD40 ligand interactions in oxidative stress, inflammation and vascular disease. Trends Mol Med 14:530–538 [CrossRef][PubMed]
    [Google Scholar]
  41. Romacho T., Azcutia V., Vázquez-Bella M., Matesanz N., Cercas E., Nevado J., Carraro R., Rodríguez-Mañas L., Sánchez-Ferrer C. F., Peiró C. 2009; Extracellular PBEF/NAMPT/visfatin activates pro-inflammatory signalling in human vascular smooth muscle cells through nicotinamide phosphoribosyltransferase activity. Diabetologia 52:2455–2463 [CrossRef][PubMed]
    [Google Scholar]
  42. Schilte C., Couderc T., Chretien F., Sourisseau M., Gangneux N., Guivel-Benhassine F., Kraxner A., Tschopp J., Higgs S. other authors 2010; Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med 207:429–442 [CrossRef][PubMed]
    [Google Scholar]
  43. Seymour R. L., Rossi S. L., Bergren N. A., Plante K. S., Weaver S. C. 2013; The role of innate versus adaptive immune responses in a mouse model of O’nyong-nyong virus infection. Am J Trop Med Hyg 88:1170–1179 [CrossRef][PubMed]
    [Google Scholar]
  44. Sourisseau M., Schilte C., Casartelli N., Trouillet C., Guivel-Benhassine F., Rudnicka D., Sol-Foulon N., Le Roux K., Prevost M. C. other authors 2007; Characterization of reemerging chikungunya virus. PLoS Pathog 3:e89 [CrossRef][PubMed]
    [Google Scholar]
  45. Swiecki M., Wang Y., Gilfillan S., Lenschow D. J., Colonna M. 2012; Cutting edge: paradoxical roles of BST2/tetherin in promoting type I IFN response and viral infection. J Immunol 188:2488–2492 [CrossRef][PubMed]
    [Google Scholar]
  46. Thio C. L., Yusof R., Abdul-Rahman P. S., Karsani S. A. 2013; Differential proteome analysis of chikungunya virus infection on host cells. PLoS ONE 8:e61444 [CrossRef][PubMed]
    [Google Scholar]
  47. Tokarev A., Suarez M., Kwan W., Fitzpatrick K., Singh R., Guatelli J. 2013; Stimulation of NF-κB activity by the HIV restriction factor BST2. J Virol 87:2046–2057 [CrossRef][PubMed]
    [Google Scholar]
  48. Van den Bergh R., Morin S., Sass H. J., Grzesiek S., Vekemans M., Florence E., Tran H. T., Imiru R. G., Heyndrickx L. other authors 2012; Monocytes contribute to differential immune pressure on R5 versus X4 HIV through the adipocytokine visfatin/NAMPT. PLoS ONE 7:e35074 [CrossRef][PubMed]
    [Google Scholar]
  49. Veillette M., Désormeaux A., Medjahed H., Gharsallah N. E., Coutu M., Baalwa J., Guan Y., Lewis G., Ferrari G. other authors 2014; Interaction with cellular CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity. J Virol 88:2633–2644 [CrossRef][PubMed]
    [Google Scholar]
  50. Wang P., Xu T. Y., Guan Y. F., Su D. F., Fan G. R., Miao C. Y. 2009; Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res 81:370–380 [CrossRef][PubMed]
    [Google Scholar]
  51. Wauquier N., Becquart P., Nkoghe D., Padilla C., Ndjoyi-Mbiguino A., Leroy E. M. 2011; The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis 204:115–123 [CrossRef][PubMed]
    [Google Scholar]
  52. Werneke S. W., Schilte C., Rohatgi A., Monte K. J., Michault A., Arenzana-Seisdedos F., Vanlandingham D. L., Higgs S., Fontanet A. other authors 2011; ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog 7:e1002322 [CrossRef][PubMed]
    [Google Scholar]
  53. Whitmire J. K., Flavell R. A., Grewal I. S., Larsen C. P., Pearson T. C., Ahmed R. 1999; CD40–CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable for CD8 T cell responses. J Immunol 163:3194–3201[PubMed]
    [Google Scholar]
  54. Wikan N., Sakoonwatanyoo P., Ubol S., Yoksan S., Smith D. R. 2012; Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage. PLoS ONE 7:e31102 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068643-0
Loading
/content/journal/jgv/10.1099/vir.0.068643-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error