1887

Abstract

The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the virus-encoded 3C protease to VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210E) within the VP1 protein and close to the VP1/2A cleavage site, inhibited cleavage of this junction and produced ‘self-tagged’ virus particles. A second site substitution (E83K) within VP1 was also observed within the rescued virus [Gullberg (2013). , 11591–11603]. It was shown here that introduction of this E83K change alone into a serotype O virus resulted in the rapid accumulation of a second site substitution within the 2A sequence (L2P), which also blocked VP1/2A cleavage. This suggests a linkage between the E83K change in VP1 and cleavage of the VP1/2A junction. Cells infected with viruses containing the VP1 K210E or the 2A L2P substitutions contained the uncleaved VP1-2A protein. The 2A L2P substitution resulted in the VP1/2A junction being highly resistant to cleavage by the 3C protease, hence it may be a preferred route for ‘tagging’ virus particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068197-0
2014-11-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/11/2402.html?itemId=/content/journal/jgv/10.1099/vir.0.068197-0&mimeType=html&fmt=ahah

References

  1. Belsham G. J. 2005; Translation and replication of FMDV RNA. Curr Top Microbiol Immunol 288:43–70[PubMed]
    [Google Scholar]
  2. Birtley J. R., Knox S. R., Jaulent A. M., Brick P., Leatherbarrow R. J., Curry S. 2005; Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity. J Biol Chem 280:11520–11527 [CrossRef][PubMed]
    [Google Scholar]
  3. Bøtner A., Kakker N. K., Barbezange C., Berryman S., Jackson T., Belsham G. J. 2011; Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. J Gen Virol 92:1141–1151 [CrossRef][PubMed]
    [Google Scholar]
  4. Carrillo C., Tulman E. R., Delhon G., Lu Z., Carreno A., Vagnozzi A., Kutish G. F., Rock D. L. 2005; Comparative genomics of foot-and-mouth disease virus. J Virol 79:6487–6504 [CrossRef][PubMed]
    [Google Scholar]
  5. Curry S., Abrams C. C., Fry E., Crowther J. C., Belsham G. J., Stuart D. I., King A. M. 1995; Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol 69:430–438[PubMed]
    [Google Scholar]
  6. Curry S., Roqué-Rosell N., Zunszain P. A., Leatherbarrow R. J. 2007; Foot-and-mouth disease virus 3C protease: recent structural and functional insights into an antiviral target. Int J Biochem Cell Biol 39:1–6 [CrossRef][PubMed]
    [Google Scholar]
  7. Donnelly M. L., Luke G., Mehrotra A., Li X., Hughes L. E., Gani D., Ryan M. D. 2001; Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025[PubMed]
    [Google Scholar]
  8. Ellard F. M., Drew J., Blakemore W. E., Stuart D. I., King A. M. 1999; Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol 80:1911–1918[PubMed]
    [Google Scholar]
  9. Escarmís C., Perales C., Domingo E. 2009; Biological effect of Muller’s Ratchet: distant capsid site can affect picornavirus protein processing. J Virol 83:6748–6756 [CrossRef][PubMed]
    [Google Scholar]
  10. Geller R., Vignuzzi M., Andino R., Frydman J. 2007; Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev 21:195–205 [CrossRef][PubMed]
    [Google Scholar]
  11. Gullberg M., Muszynski B., Organtini L. J., Ashley R. E., Hafenstein S. L., Belsham G. J., Polacek C. 2013a; Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells. J Gen Virol 94:1769–1779 [CrossRef][PubMed]
    [Google Scholar]
  12. Gullberg M., Polacek C., Bøtner A., Belsham G. J. 2013b; Processing of the VP1/2A junction is not necessary for production of foot-and-mouth disease virus empty capsids and infectious viruses: characterization of “self-tagged” particles. J Virol 87:11591–11603 [CrossRef][PubMed]
    [Google Scholar]
  13. Logan D., Abu-Ghazaleh R., Blakemore W., Curry S., Jackson T., King A., Lea S., Lewis R., Newman J.other authors 1993; Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362:566–568 [CrossRef][PubMed]
    [Google Scholar]
  14. Maree F. F., Blignaut B., de Beer T. A., Visser N., Rieder E. A. 2010; Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses. Virus Res 153:82–91 [CrossRef][PubMed]
    [Google Scholar]
  15. Medina M., Domingo E., Brangwyn J. K., Belsham G. J. 1993; The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194:355–359 [CrossRef][PubMed]
    [Google Scholar]
  16. Nayak A., Goodfellow I. G., Woolaway K. E., Birtley J., Curry S., Belsham G. J. 2006; Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication. J Virol 80:9865–9875 [CrossRef][PubMed]
    [Google Scholar]
  17. OIE 2009; Foot-and-mouth disease. Manual of standards for diagnostic test and vaccines for terrestrial animals. http://web.oie.int/eng/normes/MMANUAL/A_Index.htm
    [Google Scholar]
  18. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. 2004; UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  19. Polacek C., Gullberg M., Li J., Belsham G. J. 2013; Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells. J Gen Virol 94:1249–1258 [CrossRef][PubMed]
    [Google Scholar]
  20. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  21. Roeder P. L., Le Blanc Smith P. M. 1987; Detection and typing of foot-and-mouth disease virus by enzyme-linked immunosorbent assay: a sensitive, rapid and reliable technique for primary diagnosis. Res Vet Sci 43:225–232[PubMed]
    [Google Scholar]
  22. Ryan M. D., Belsham G. J., King A. M. 1989; Specificity of enzyme-substrate interactions in foot-and-mouth disease virus polyprotein processing. Virology 173:35–45 [CrossRef][PubMed]
    [Google Scholar]
  23. Sanner M. F., Olson A. J., Spehner J. C. 1996; Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320 [CrossRef][PubMed]
    [Google Scholar]
  24. Strebel K., Beck E. 1986; A second protease of foot-and-mouth disease virus. J Virol 58:893–899[PubMed]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  26. Yang D., Zhang C., Zhao L., Zhou G., Wang H., Yu L. 2011; Identification of a conserved linear epitope on the VP1 protein of serotype O foot-and-mouth disease virus by neutralising monoclonal antibody 8E8. Virus Res 155:291–299 [CrossRef][PubMed]
    [Google Scholar]
  27. Yu Y., Wang H., Zhao L., Zhang C., Jiang Z., Yu L. 2011; Fine mapping of a foot-and-mouth disease virus epitope recognized by serotype-independent monoclonal antibody 4B2. J Microbiol 49:94–101 [CrossRef][PubMed]
    [Google Scholar]
  28. Zhao Q., Pacheco J. M., Mason P. W. 2003; Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J Virol 77:3269–3280 [CrossRef][PubMed]
    [Google Scholar]
  29. Zunszain P. A., Knox S. R., Sweeney T. R., Yang J., Roqué-Rosell N., Belsham G. J., Leatherbarrow R. J., Curry S. 2010; Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. J Mol Biol 395:375–389 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068197-0
Loading
/content/journal/jgv/10.1099/vir.0.068197-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error