1887

Abstract

Wild freshwater eel populations have dramatically declined in recent past decades in Europe and America, partially through the impact of several factors including the wide spread of infectious diseases. The anguillid rhabdoviruses eel virus European X (EVEX) and eel virus American (EVA) potentially play a role in this decline, even if their real contribution is still unclear. In this study, we investigate the evolutionary dynamics and genetic diversity of anguiillid rhabdoviruses by analysing sequences from the glycoprotein, nucleoprotein and phosphoprotein (P) genes of 57 viral strains collected from seven countries over 40 years using maximum-likelihood and Bayesian approaches. Phylogenetic trees from the three genes are congruent and allow two monophyletic groups, European and American, to be clearly distinguished. Results of nucleotide substitution rates per site per year indicate that the P gene is expected to evolve most rapidly. The nucleotide diversity observed is low (2–3 %) for the three genes, with a significantly higher variability within the P gene, which encodes multiple proteins from a single genomic RNA sequence, particularly a small C protein. This putative C protein is a potential molecular marker suitable for characterization of distinct genotypes within anguillid rhabdoviruses. This study provides, to our knowledge, the first molecular characterization of EVA, brings new insights to the evolutionary dynamics of two genotypes of , and is a baseline for further investigations on the tracking of its spread.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.069443-0
2014-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/11/2390.html?itemId=/content/journal/jgv/10.1099/vir.0.069443-0&mimeType=html&fmt=ahah

References

  1. Ahne W. , Schwanz-Pfitzner I. , Thomsen I. . ( 1987; ). Serological identification of 9 viral isolates from European eels (Anguilla anguilla) with stomatopapilloma by means of neutralization tests. . J Appl Ichthyol 3:, 30–32. [CrossRef]
    [Google Scholar]
  2. Badrane H. , Tordo N. . ( 2001; ). Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. . J Virol 75:, 8096–8104. [CrossRef] [PubMed]
    [Google Scholar]
  3. Benmansour A. , Basurco B. , Monnier A. F. , Vende P. , Winton J. R. , de Kinkelin P. . ( 1997; ). Sequence variation of the glycoprotein gene identifies three distinct lineages within field isolates of viral haemorrhagic septicaemia virus, a fish rhabdovirus. . J Gen Virol 78:, 2837–2846.[PubMed]
    [Google Scholar]
  4. Casselman J. M. . ( 2003; ). Dynamics of resources of the American eel, Anguilla rostrata: declining abundance in the 1990s. . In Eel Biology, part 4, pp. 255–274. Edited by Aida K. , Tsukamoto K. , Yamauchi K. . . Tokyo:: Springer;. [CrossRef]
    [Google Scholar]
  5. Castresana J. . ( 2000; ). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef] [PubMed]
    [Google Scholar]
  6. Castric J. , Chastel C. . ( 1980; ). Isolation and characterization attempts of three viruses from European eel, Anguilla anguilla: preliminary results. . Annales Virologie (Institut Pasteur) 131E:, 435–448.[CrossRef]
    [Google Scholar]
  7. Castric J. , Rasschaert D. , Bernard J. . ( 1984; ). Evidence of lyssaviruses among rhabdovirus isolates from the European eel Anguilla anguilla. . Annales Virologie (Instut Pasteur) 135:, 35–55.[CrossRef]
    [Google Scholar]
  8. Castro-Nallar E. , Cortez-San Martín M. , Mascayano C. , Molina C. , Crandall K. A. . ( 2011; ). Molecular phylodynamics and protein modeling of infectious salmon anemia virus (ISAV). . BMC Evol Biol 11:, 349. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen H. L. , Liu H. , Liu Z. X. , He J. Q. , Gao L. Y. , Shi X. J. , Jiang Y. L. . ( 2009; ). Characterization of the complete genome sequence of pike fry rhabdovirus. . Arch Virol 154:, 1489–1494. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dannewitz J. , Maes G. E. , Johansson L. , Wickström H. , Volckaert F. A. , Järvi T. . ( 2005; ). Panmixia in the European eel: a matter of time. . Proc Biol Sci 272:, 1129–1137. [CrossRef] [PubMed]
    [Google Scholar]
  11. Darriba D. , Taboada G. L. , Doallo R. , Posada D. . ( 2012; ). jModelTest 2: more models, new heuristics and parallel computing. . Nat Methods 9:, 772. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dekker W. . ( 2003; ). Status of the European eel stock and fisheries. . In Eel Biology, part 4, pp. 237–254. Edited by Aida K. , Tsukamoto K. , Yamauchi K. . . Tokyo:: Springer;. [CrossRef]
    [Google Scholar]
  13. Dekker W. . ( 2004; ). Slipping Through our Hands. Population Dynamics of the European Eel. Amsterdam:: Universiteit van Amsterdam;.
    [Google Scholar]
  14. Dereeper A. , Guignon V. , Blanc G. , Audic S. , Buffet S. , Chevenet F. , Dufayard J.-F. , Guindon S. , Lefort V. . & other authors ( 2008; ). Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server issue), W465–W469. [CrossRef] [PubMed]
    [Google Scholar]
  15. Domingo E. , Holland J. J. . ( 1997; ). RNA virus mutations and fitness for survival. . Annu Rev Microbiol 51:, 151–178. [CrossRef] [PubMed]
    [Google Scholar]
  16. Drake J. W. , Charlesworth B. , Charlesworth D. , Crow J. F. . ( 1998; ). Rates of spontaneous mutation. . Genetics 148:, 1667–1686.[PubMed]
    [Google Scholar]
  17. Drummond A. J. , Rambaut A. . ( 2007; ). BEAST: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef] [PubMed]
    [Google Scholar]
  18. Drummond A. J. , Rambaut A. , Shapiro B. , Pybus O. G. . ( 2005; ). Bayesian coalescent inference of past population dynamics from molecular sequences. . Mol Biol Evol 22:, 1185–1192. [CrossRef] [PubMed]
    [Google Scholar]
  19. Drummond A. J. , Ho S. Y. , Phillips M. J. , Rambaut A. . ( 2006; ). Relaxed phylogenetics and dating with confidence. . PLoS Biol 4:, e88. [CrossRef] [PubMed]
    [Google Scholar]
  20. Duffy S. , Shackelton L. A. , Holmes E. C. . ( 2008; ). Rates of evolutionary change in viruses: patterns and determinants. . Nat Rev Genet 9:, 267–276. [CrossRef] [PubMed]
    [Google Scholar]
  21. Einer-Jensen K. , Ahrens P. , Forsberg R. , Lorenzen N. . ( 2004; ). Evolution of the fish rhabdovirus viral haemorrhagic septicaemia virus. . J Gen Virol 85:, 1167–1179. [CrossRef] [PubMed]
    [Google Scholar]
  22. Einer-Jensen K. , Ahrens P. , Lorenzen N. . ( 2005; ). Parallel phylogenetic analyses using the N, G or Nv gene from a fixed group of VHSV isolates reveal the same overall genetic typing. . Dis Aquat Organ 67:, 39–45. [CrossRef] [PubMed]
    [Google Scholar]
  23. Galinier R. , van Beurden S. , Amilhat E. , Castric J. , Schoehn G. , Verneau O. , Fazio G. , Allienne J. F. , Engelsma M. . & other authors ( 2012; ). Complete genomic sequence and taxonomic position of eel virus European X (EVEX), a rhabdovirus of European eel. . Virus Res 166:, 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  24. Goldman N. , Yang Z. . ( 1994; ). A codon-based model of nucleotide substitution for protein-coding DNA sequences. . Mol Biol Evol 11:, 725–736.[PubMed]
    [Google Scholar]
  25. Gouy M. , Guindon S. , Gascuel O. . ( 2010; ). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef] [PubMed]
    [Google Scholar]
  26. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  27. Guindon S. , Lethiec F. , Duroux P. , Gascuel O. . ( 2005; ). PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. . Nucleic Acids Res 33: (Web Server issue), W557–W5599. [CrossRef] [PubMed]
    [Google Scholar]
  28. Haenen O. , van Ginneken V. , Engelsma M. , van den Thillart G. . ( 2009; ). Impact of eel viruses on recruitment of European eel. . In Spawning Migration of the European Eel, part V, pp. 387–400. Edited by van den Thillart G. , Dufour S. , Rankin J. C. . . Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  29. Haenen O. , Mladineo I. , Konecny R. , Yoshimizu M. , Groman D. , Munoz P. , Saraiva A. , Bergmann S. , Van Beurden S. . ( 2012; ). Diseases of eels in an international perspective: Workshop on Eel Diseases at the 15th International Conference on Diseases of Fish and Shellfish, Split, Croatia, 2011. . Bull Eur Assoc Fish Pathologists 32:, 109–115.
    [Google Scholar]
  30. Haro A. , Richkus W. , Whalen K. , Hoar A. , Busch W.-D. , Lary S. , Brush T. , Dixon D. . ( 2000; ). Population decline of the American eel: implications for research and management. . Fisheries (Bethesda, Md) 25:, 7–16. [CrossRef]
    [Google Scholar]
  31. He M. , Yan X. C. , Liang Y. , Sun X. W. , Teng C. B. . ( 2014; ). Evolution of the viral hemorrhagic septicemia virus: divergence, selection and origin. . Mol Phylogenet Evol 77:, 34–40. [CrossRef] [PubMed]
    [Google Scholar]
  32. Hill B. J. , Williams R. F. , Smale C. J. , Underwood B. O. , Brown F. . ( 1980; ). Physicochemical and serological characterization of two rhabdoviruses isolated from eels. . Intervirology 14:, 208–212. [CrossRef] [PubMed]
    [Google Scholar]
  33. Hoffmann B. , Beer M. , Schütze H. , Mettenleiter T. C. . ( 2005; ). Fish rhabdoviruses: molecular epidemiology and evolution. . Curr Top Microbiol Immunol 292:, 81–117.[PubMed]
    [Google Scholar]
  34. Jenkins G. M. , Rambaut A. , Pybus O. G. , Holmes E. C. . ( 2002; ). Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. . J Mol Evol 54:, 156–165. [CrossRef] [PubMed]
    [Google Scholar]
  35. Johansson T. , Östman-Myllyoja L. , Hellström A. , Martelius S. , Olesen N. J. , Björklund H. . ( 2002; ). A novel fish rhabdovirus from Sweden is closely related to the Finnish rhabdovirus 903/87. . Virus Genes 25:, 127–138. [CrossRef] [PubMed]
    [Google Scholar]
  36. Jørgensen P. E. V. , Castric J. , Hill B. , Ljungberg O. , de Kinkelin P. . ( 1994; ). The occurrence of virus infections in elvers and eels (Anguilla anguilla) in Europe with particular reference to VHSV and IHNV. . Aquaculture 123:, 11–19. [CrossRef]
    [Google Scholar]
  37. Korber B. . ( 2000; ). HIV signature and sequence variation analysis. . In Computational Analysis of HIV Molecular Sequences, ch. 4, 55–72. Edited by Rodrigo A. G. , Learn G. H. . . Dordrecht:: Kluwer;.
    [Google Scholar]
  38. Kretzschmar E. , Peluso R. , Schnell M. J. , Whitt M. A. , Rose J. K. . ( 1996; ). Normal replication of vesicular stomatitis virus without C proteins. . Virology 216:, 309–316. [CrossRef] [PubMed]
    [Google Scholar]
  39. Kurath G. , Garver K. A. , Troyer R. M. , Emmenegger E. J. , Einer-Jensen K. , Anderson E. D. . ( 2003; ). Phylogeography of infectious haematopoietic necrosis virus in North America. . J Gen Virol 84:, 803–814. [CrossRef] [PubMed]
    [Google Scholar]
  40. Kuzmin I. V. , Novella I. S. , Dietzgen R. G. , Padhi A. , Rupprecht C. E. . ( 2009; ). The rhabdoviruses: biodiversity, phylogenetics, and evolution. . Infect Genet Evol 9:, 541–553. [CrossRef] [PubMed]
    [Google Scholar]
  41. Leyrat C. , Schneider R. , Ribeiro E. A. Jr , Yabukarski F. , Yao M. , Gérard F. C. , Jensen M. R. , Ruigrok R. W. , Blackledge M. , Jamin M. . ( 2012; ). Ensemble structure of the modular and flexible full-length vesicular stomatitis virus phosphoprotein. . J Mol Biol 423:, 182–197. [CrossRef] [PubMed]
    [Google Scholar]
  42. Librado P. , Rozas J. . ( 2009; ). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. . Bioinformatics 25:, 1451–1452. [CrossRef] [PubMed]
    [Google Scholar]
  43. Marriott A. C. . ( 2005; ). Complete genome sequences of Chandipura and Isfahan vesiculoviruses. . Arch Virol 150:, 671–680. [CrossRef] [PubMed]
    [Google Scholar]
  44. Minegishi Y. , Aoyama J. , Inoue J. G. , Miya M. , Nishida M. , Tsukamoto K. . ( 2005; ). Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. . Mol Phylogenet Evol 34:, 134–146. [CrossRef] [PubMed]
    [Google Scholar]
  45. Muse S. V. , Gaut B. S. . ( 1994; ). A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. . Mol Biol Evol 11:, 715–724.[PubMed]
    [Google Scholar]
  46. Nadin-Davis S. A. , Abdel-Malik M. , Armstrong J. , Wandeler A. I. . ( 2002; ). Lyssavirus P gene characterisation provides insights into the phylogeny of the genus and identifies structural similarities and diversity within the encoded phosphoprotein. . Virology 298:, 286–305. [CrossRef] [PubMed]
    [Google Scholar]
  47. Nishimura T. , Toba M. , Ban F. , Okamoto N. , Sano T. . ( 1981; ). Eel rhabdovirus, EVA, EVEX and their infectivity to fishes. . Fish Pathol 15:, 173–184. [CrossRef]
    [Google Scholar]
  48. Padhi A. , Verghese B. . ( 2012; ). Molecular evolutionary and epidemiological dynamics of a highly pathogenic fish rhabdovirus, the spring viremia of carp virus (SVCV). . Vet Microbiol 156:, 54–63. [CrossRef] [PubMed]
    [Google Scholar]
  49. Panzarin V. , Fusaro A. , Monne I. , Cappellozza E. , Patarnello P. , Bovo G. , Capua I. , Holmes E. C. , Cattoli G. . ( 2012; ). Molecular epidemiology and evolutionary dynamics of Betanodavirus in southern Europe. . Infect Genet Evol 12:, 63–70. [CrossRef] [PubMed]
    [Google Scholar]
  50. Pauszek S. J. , Allende R. , Rodriguez L. L. . ( 2008; ). Characterization of the full-length genomic sequences of vesicular stomatitis Cocal and Alagoas viruses. . Arch Virol 153:, 1353–1357. [CrossRef] [PubMed]
    [Google Scholar]
  51. Peluso R. W. , Richardson J. C. , Talon J. , Lock M. . ( 1996; ). Identification of a set of proteins (C′ and C) encoded by the bicistronic P gene of the Indiana serotype of vesicular stomatitis virus and analysis of their effect on transcription by the viral RNA polymerase. . Virology 218:, 335–342. [CrossRef] [PubMed]
    [Google Scholar]
  52. Richkus W. A. , Whalen K. . ( 2000; ). Evidence for a decline in the abundance of the American eel, Anguilla rostrata (LeSueur), in North America since the early 1980s. . Dana 12:, 83–97.
    [Google Scholar]
  53. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  54. Rozas J. , Sánchez-DelBarrio J. C. , Messeguer X. , Rozas R. . ( 2003; ). DnaSP, DNA polymorphism analyses by the coalescent and other methods. . Bioinformatics 19:, 2496–2497. [CrossRef] [PubMed]
    [Google Scholar]
  55. Sánchez R. , Serra F. , Tárraga J. , Medina I. , Carbonell J. , Pulido L. , de María A. , Capella-Gutíerrez S. , Huerta-Cepas J. . & other authors ( 2011; ). Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. . Nucleic Acids Res 39: (Suppl. 2), W470–W474. [CrossRef] [PubMed]
    [Google Scholar]
  56. Sano T. . ( 1976; ). Viral diseases of cultured fishes in Japan. . Fish Pathol 10:, 221–226. [CrossRef]
    [Google Scholar]
  57. Sano T. , Nishimura T. , Okamoto N. , Fukuda H. . ( 1976; ). Isolation of rhabdovirus from European eels (Anguilla anguilla) at Japanese port of entry. . Fish Health News 5:, 5–6.
    [Google Scholar]
  58. Sano T. , Nishimura T. , Okamoto N. , Fukuda H. . ( 1977; ). Studies on viral diseases of Japanese fishes. VII. A rhabdovirus isolated from European eel, Anguilla anguilla. . Nippon Suisan Gakkaishi 43:, 491–495. [CrossRef]
    [Google Scholar]
  59. Shapiro B. , Rambaut A. , Drummond A. J. . ( 2006; ). Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. . Mol Biol Evol 23:, 7–9. [CrossRef] [PubMed]
    [Google Scholar]
  60. Shchelkunov I. S. , Skurat E. K. , Sivolotskaia V. A. , Sapot’ko K. V. , Shimko V. V. . ( 1989; ). [Rhabdovirus anguilla in eels in the USSR and its pathogenicity for fish]. . Vopr Virusol 34:, 81–84 (in Russian).[PubMed]
    [Google Scholar]
  61. Snow M. , Cunningham C. O. , Melvin W. T. , Kurath G. . ( 1999; ). Analysis of the nucleoprotein gene identifies distinct lineages of viral haemorrhagic septicaemia virus within the European marine environment. . Virus Res 63:, 35–44. [CrossRef] [PubMed]
    [Google Scholar]
  62. Spiropoulou C. F. , Nichol S. T. . ( 1993; ). A small highly basic protein is encoded in overlapping frame within the P gene of vesicular stomatitis virus. . J Virol 67:, 3103–3110.[PubMed]
    [Google Scholar]
  63. Stone R. . ( 2003; ). Ecology. Freshwater eels are slip-sliding away. . Science 302:, 221–222. [CrossRef] [PubMed]
    [Google Scholar]
  64. Stone D. M. , Ahne W. , Denham K. L. , Dixon P. F. , Liu C. T. , Sheppard A. M. , Taylor G. R. , Way K. . ( 2003; ). Nucleotide sequence analysis of the glycoprotein gene of putative spring viraemia of carp virus and pike fry rhabdovirus isolates reveals four genogroups. . Dis Aquat Organ 53:, 203–210. [CrossRef] [PubMed]
    [Google Scholar]
  65. Stone D. M. , Kerr R. C. , Hughes M. , Radford A. D. , Darby A. C. . ( 2013; ). Characterisation of the genomes of four putative vesiculoviruses: tench rhabdovirus, grass carp rhabdovirus, perch rhabdovirus and eel rhabdovirus European X. . Arch Virol 158:, 2371–2377. [CrossRef] [PubMed]
    [Google Scholar]
  66. Tajima F. . ( 1989; ). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. . Genetics 123:, 585–595.[PubMed]
    [Google Scholar]
  67. Talbi C. , Cabon J. , Baud M. , Bourjaily M. , de Boisséson C. , Castric J. , Bigarré L. . ( 2011; ). Genetic diversity of perch rhabdoviruses isolates based on the nucleoprotein and glycoprotein genes. . Arch Virol 156:, 2133–2144. [CrossRef] [PubMed]
    [Google Scholar]
  68. Teng Y. , Liu H. , Lv J. Q. , Fan W. H. , Zhang Q. Y. , Qin Q. W. . ( 2007; ). Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China. . Arch Virol 152:, 1457–1465. [CrossRef] [PubMed]
    [Google Scholar]
  69. van Beurden S. J. , Voorbergen-Laarman M. A. , Roozenburg I. , Boerlage A. S. , Haenen O. L. , Engelsma M. Y. . ( 2011; ). Development and validation of a two-step real-time RT-PCR for the detection of eel virus European X in European eel, Anguilla anguilla . . J Virol Methods 171:, 352–359. [CrossRef] [PubMed]
    [Google Scholar]
  70. van Beurden S. J. , Engelsma M. Y. , Roozenburg I. , Voorbergen-Laarman M. A. , van Tulden P. W. , Kerkhoff S. , van Nieuwstadt A. P. , Davidse A. , Haenen O. L. . ( 2012; ). Viral diseases of wild and farmed European eel Anguilla anguilla with particular reference to The Netherlands. . Dis Aquat Organ 101:, 69–86. [CrossRef] [PubMed]
    [Google Scholar]
  71. van Ginneken V. , Haenen O. , Coldenhoff K. , Willemze R. , Antonissen E. , van Tulden P. , Dijkstra S. , Wagenaar F. , van den Thillart G. . ( 2004; ). Presence of eel viruses in eel species from various geographic regions. . Bull Eur Assoc Fish Pathologists 24:, 268.
    [Google Scholar]
  72. van Ginneken V. , Ballieux B. , Willemze R. , Coldenhoff K. , Lentjes E. , Antonissen E. , Haenen O. , van den Thillart G. . ( 2005; ). Hematology patterns of migrating European eels and the role of EVEX virus. . Comp Biochem Physiol C Toxicol Pharmacol 140:, 97–102. [CrossRef] [PubMed]
    [Google Scholar]
  73. Walker P. J. , Dietzgen R. G. , Joubert D. A. , Blasdell K. R. . ( 2011; ). Rhabdovirus accessory genes. . Virus Res 162:, 110–125. [CrossRef] [PubMed]
    [Google Scholar]
  74. Wertheim J. O. , Kosakovsky Pond S. L. . ( 2011; ). Purifying selection can obscure the ancient age of viral lineages. . Mol Biol Evol 28:, 3355–3365. [CrossRef] [PubMed]
    [Google Scholar]
  75. Wirth T. , Bernatchez L. . ( 2003; ). Decline of North Atlantic eels: a fatal synergy?. Proc Biol Sci 270:, 681–688. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.069443-0
Loading
/content/journal/jgv/10.1099/vir.0.069443-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error