1887

Abstract

We used SILAC (stable isotope labelling of amino acids in cell culture) and high-throughput quantitative MS mass spectrometry to analyse the protein composition of highly purified WT wild type adenoviruses, mutant adenoviruses lacking an internal protein component (protein V) and recombinant adenoviruses of the type commonly used in gene therapy, including one virus that had been used in a clinical trial. We found that the viral protein abundance and composition were consistent across all types of virus examined except for the virus lacking protein V, which also had reduced amounts of another viral core protein, protein VII. In all the samples analysed we found no evidence of consistent packaging or contamination with cellular proteins. We believe this technique is a powerful method to analyse the protein composition of this important gene therapy vector and genetically engineered or synthetic virus-like particles. The raw data have been deposited at proteomexchange, identifer PXD001120.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068221-0
2014-11-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/11/2504.html?itemId=/content/journal/jgv/10.1099/vir.0.068221-0&mimeType=html&fmt=ahah

References

  1. Benevento M., Di Palma S., Snijder J., Moyer C. L., Reddy V. S., Nemerow G. R., Heck A. J.. ( 2014;). Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics. . J Biol Chem 289:, 11421–11430. [CrossRef][PubMed]
    [Google Scholar]
  2. Bergström Lind S., Artemenko K. A., Elfineh L., Zhao Y., Bergquist J., Pettersson U.. ( 2012;). The phosphoproteome of the adenovirus type 2 virion. . Virology 433:, 253–261. [CrossRef][PubMed]
    [Google Scholar]
  3. Black B. C., Center M. S.. ( 1979;). DNA-binding properties of the major core protein of adenovirus 2. . Nucleic Acids Res 6:, 2339–2353. [CrossRef][PubMed]
    [Google Scholar]
  4. Boudin M. L., D’Halluin J. C., Cousin C., Boulanger P.. ( 1980;). Human adenovirus type 2 protein IIIa. II. Maturation and encapsidation. . Virology 101:, 144–156. [CrossRef][PubMed]
    [Google Scholar]
  5. Chatterjee P. K., Vayda M. E., Flint S. J.. ( 1985;). Interactions among the three adenovirus core proteins. . J Virol 55:, 379–386.[PubMed]
    [Google Scholar]
  6. Chelius D., Hühmer A. F., Shieh C. H., Lehmberg E., Traina J. A., Slattery T. K., Pungor E. Jr. ( 2002;). Analysis of the adenovirus type 5 proteome by liquid chromatography and tandem mass spectrometry methods. . J Proteome Res 1:, 501–513. [CrossRef][PubMed]
    [Google Scholar]
  7. Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M.. ( 2011;). Andromeda: a peptide search engine integrated into the MaxQuant environment. . J Proteome Res 10:, 1794–1805. [CrossRef][PubMed]
    [Google Scholar]
  8. D’Halluin J. C., Martin G. R., Torpier G., Boulanger P. A.. ( 1978;). Adenovirus type 2 assembly analyzed by reversible cross-linking of labile intermediates. . J Virol 26:, 357–363.[PubMed]
    [Google Scholar]
  9. Edvardsson B., Everitt E., Jörnvall H., Prage L., Philipson L.. ( 1976;). Intermediates in adenovirus assembly. . J Virol 19:, 533–547.[PubMed]
    [Google Scholar]
  10. Evans V. C., Barker G., Heesom K. J., Fan J., Bessant C., Matthews D. A.. ( 2012;). De novo derivation of proteomes from transcriptomes for transcript and protein identification. . Nat Methods 9:, 1207–1211. [CrossRef][PubMed]
    [Google Scholar]
  11. Everitt E., Sundquist B., Pettersson U., Philipson L.. ( 1973;). Structural proteins of adenoviruses. X. Isolation and topography of low molecular weight antigens from the virion of adenovirus type 2. . Virology 52:, 130–147. [CrossRef][PubMed]
    [Google Scholar]
  12. Giberson A. N., Davidson A. R., Parks R. J.. ( 2012;). Chromatin structure of adenovirus DNA throughout infection. . Nucleic Acids Res 40:, 2369–2376. [CrossRef][PubMed]
    [Google Scholar]
  13. Ishibashi M., Maizel J. V. Jr. ( 1974;). The polypeptides of adenovirus. V. Young virions, structural intermediate between top components and aged virions. . Virology 57:, 409–424. [CrossRef][PubMed]
    [Google Scholar]
  14. Kanegae Y., Makimura M., Saito I.. ( 1994;). A simple and efficient method for purification of infectious recombinant adenovirus. . Jpn J Med Sci Biol 47:, 157–166. [CrossRef][PubMed]
    [Google Scholar]
  15. Liu Y. H., Vellekamp G., Chen G. D., Mirza U. A., Wylie D., Twarowska B., Tang J. T., Porter F. W., Wang S. H.. & other authors ( 2003;). Proteomic study of recombinant adenovirus 5 encoding human p53 by matrix-assisted laser desorption/ionization mass spectrometry in combination with database search. . Int J Mass Spectrom 226:, 55–69. [CrossRef]
    [Google Scholar]
  16. Michael K., Klupp B. G., Mettenleiter T. C., Karger A.. ( 2006;). Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. . J Virol 80:, 1332–1339. [CrossRef][PubMed]
    [Google Scholar]
  17. Naskalska A., Szolajska E., Andreev I., Podsiadla M., Chroboczek J.. ( 2013;). Towards a novel influenza vaccine: engineering of hemagglutinin on a platform of adenovirus dodecahedron. . BMC Biotechnol 13:, 50. [CrossRef][PubMed]
    [Google Scholar]
  18. Nemerow G. R., Stewart P. L., Reddy V. S.. ( 2012;). Structure of human adenovirus. . Curr Opin Virol 2:, 115–121. [CrossRef][PubMed]
    [Google Scholar]
  19. Pérez-Berná A. J., Marabini R., Scheres S. H. W., Menéndez-Conejero R., Dmitriev I. P., Curiel D. T., Mangel W. F., Flint S. J., San Martín C.. ( 2009;). Structure and uncoating of immature adenovirus. . J Mol Biol 392:, 547–557. [CrossRef][PubMed]
    [Google Scholar]
  20. Rekosh D.. ( 1981;). Analysis of the DNA-terminal protein from different serotypes of human adenovirus. . J Virol 40:, 329–333.[PubMed]
    [Google Scholar]
  21. Riske F., Berard N., Albee K., Pan P., Henderson M., Adams K., Godwin S., Spear S.. ( 2013;). Development of a platform process for adenovirus purification that removes human SET and nucleolin and provides high purity vector for gene delivery. . Biotechnol Bioeng 110:, 848–856. [CrossRef][PubMed]
    [Google Scholar]
  22. Russell W. C.. ( 2009;). Adenoviruses: update on structure and function. . J Gen Virol 90:, 1–20. [CrossRef][PubMed]
    [Google Scholar]
  23. San Martín C.. ( 2012;). Latest insights on adenovirus structure and assembly. . Viruses 4:, 847–877. [CrossRef][PubMed]
    [Google Scholar]
  24. Shenk T.. ( 1996;). Adenoviridae: The Viruses and their Replication. Philadelphia, PA:: Lippincott-Raven;.
    [Google Scholar]
  25. Smaill F., Jeyanathan M., Smieja M., Medina M. F., Thanthrige-Don N., Zganiacz A., Yin C., Heriazon A., Damjanovic D.. & other authors ( 2013;). A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. . Sci Transl Med 5:, 205ra134. [CrossRef][PubMed]
    [Google Scholar]
  26. Stewart P. L., Burnett R. M.. ( 1995;). Adenovirus structure by X-ray crystallography and electron microscopy. . Curr Top Microbiol Immunol 199:, 25–38.[PubMed]
    [Google Scholar]
  27. Sundquist B., Everitt E., Philipson L., Hoglund S.. ( 1973;). Assembly of adenoviruses. . J Virol 11:, 449–459.[PubMed]
    [Google Scholar]
  28. Sutjipto S., Ravindran S., Cornell D., Liu Y. H., Horn M., Schluep T., Hutchins B., Vellekamp G.. ( 2005;). Characterization of empty capsids from a conditionally replicating adenovirus for gene therapy. . Hum Gene Ther 16:, 109–125. [CrossRef][PubMed]
    [Google Scholar]
  29. Takahashi E., Cohen S. L., Tsai P. K., Sweeney J. A.. ( 2006;). Quantitation of adenovirus type 5 empty capsids. . Anal Biochem 349:, 208–217. [CrossRef][PubMed]
    [Google Scholar]
  30. Ugai H., Yamasaki T., Hirose M., Inabe K., Kujime Y., Terashima M., Liu B., Tang H., Zhao M.. & other authors ( 2005;). Purification of infectious adenovirus in two hours by ultracentrifugation and tangential flow filtration. . Biochem Biophys Res Commun 331:, 1053–1060. [CrossRef][PubMed]
    [Google Scholar]
  31. Ugai H., Borovjagin A. V., Le L. P., Wang M. H., Curiel D. T.. ( 2007;). Thermostability/infectivity defect caused by deletion of the core protein V gene in human adenovirus type 5 is rescued by thermo-selectable mutations in the core protein X precursor. . J Mol Biol 366:,1142–1160. [CrossRef][PubMed]
    [Google Scholar]
  32. Ugai H., Dobbins G. C., Wang M. H., Le L. P., Matthews D. A., Curiel D. T.. ( 2012;). Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1. . Virology 432:, 283–295. [CrossRef][PubMed]
    [Google Scholar]
  33. van Oostrum J., Burnett R. M.. ( 1985;). Molecular composition of the adenovirus type 2 virion. . J Virol 56:, 439–448.[PubMed]
    [Google Scholar]
  34. Vellinga J., Van der Heijdt S., Hoeben R. C.. ( 2005;). The adenovirus capsid: major progress in minor proteins. . J Gen Virol 86:, 1581–1588. [CrossRef][PubMed]
    [Google Scholar]
  35. Wang I.-H., Suomalainen M., Andriasyan V., Kilcher S., Mercer J., Neef A., Luedtke N. W., Greber U. F.. ( 2013;). Tracking viral genomes in host cells at single-molecule resolution. . Cell Host Microbe 14:, 468–480. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068221-0
Loading
/content/journal/jgv/10.1099/vir.0.068221-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error