-
Volume 49,
Issue 1,
1999
Volume 49, Issue 1, 1999
- New Taxa - Proteobacteria
-
-
-
Bartonella alsatica sp. nov., a new Bartonella species isolated from the blood of wild rabbits
Bartonella species are considered as emerging human pathogens, with at least six different species pathogenic or possibly pathogenic for humans. However, little is known about Bartonella distribution, species polymorphism and pathogenicity in mammalian species. The objective of this work was to determine the presence, the frequency and the distribution of Bartonella species in wild rabbits (Oryctolagus cuniculus) caught in warrens in Alsace, France. Humans may come into contact with wild rabbits when hunting, especially when they are picked up with bare hands and at time of evisceration. Of 30 blood samples collected and cultured from wild rabbits, nine (30%) were positive for organisms morphologically similar to Bartonella spp. The bacteria appeared as small, fastidious, aerobic, oxidase-negative. Gram-negative rods which could be localized within erythrocytes. Their biochemical properties were similar to those of the genus Bartonella. The sequence of the 16S rRNA gene obtained from the rabbit isolates was highly related to the sequences of the different Bartonella species (97·8-99·3% similarity). The high DNA hybridization rate (81–90% similarity) between the three strains isolated from rabbit blood confirmed that they belong to the same bacterial species. Hybridization values, obtained with the nuclease-TCA method, when testing type strains of recognized Bartonella species (9-14% similarity), support the creation of a new species for the rabbit isolates. The name Bartonella alsatica is proposed for these strains isolated from the blood of wild rabbits. The type strain is IBS 382T(= CIP 105477T).
-
-
-
-
A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov.
The taxonomic position of a yellow-pigmented group of bacteria, isolated from the phyilosphere of grasses was investigated. Results obtained from restriction analysis of amplified 16S rDNA with seven endonucleases (CfoI, HaeIII, AluI, HinfI, MspI, Sau3A and ScrFI) showed identical restriction patterns for each enzyme of all isolates studied, which suggests that all strains belong to the same species. The grass isolates displayed the characteristics of the genus Pseudomonas. They were Gram-negative, aerobic and rod-shaped with polar flagella. Isolates were catalase-positive and oxidase-negative, and unable to oxidize or ferment glucose with the production of acid. The isolates did not reduce nitrate to nitrite but were able to utilize a wide range of compounds individually as a sole carbon source, with preference being given to the utilization of monosaccharides. The disaccharides tested were not utilized as substrates. The DNA base compositions of the tested strains ranged from 60 to 61 mol% G+C. The major isoprenoid quinone of each was ubiquinone Q-9 and hydroxy fatty acids were represented by 3-hydroxydodecanoic acid and 2-hydroxydodecanoic acid. Comparison of 16S rDNA sequences showed that the bacteria were members of the genus Pseudomonas, with similarity values between 91·5 and 97·7%. DNA–DNA hybridization studies with closely related neighbours revealed a low level of homology (< 27%), indicating that the isolates represent an individual species. On the basis of phenotypic and phylogenetic analyses a new species, Pseudomonas graminis sp. nov. (type strain DSM 11363T), is proposed.
-
- New Taxa - Gram-Positive Bacteria
-
-
-
Classification of thermophilic streptomycetes, including the description of Streptomyces thermoalcalitolerans sp. nov.
A polyphasic taxonomic study was undertaken to clarify relationships within and between representative thermophilic alkalitolerant streptomycetes isolated from soil and appropriate marker strains. The resultant data, notably those from DNA–DNA relatedness studies, support the taxonomic integrity of the validly described species Streptomyces thermodiastaticus, Streptomyces thermoviolaceus and Streptomyces thermovulgaris. However, the genotypic and phenotypic data clearly show that Streptomyces thermonitrificans Desai and Dhala 1967 and S. thermovulgaris ( Henssen 1957 ) Goodfellow et al. 1987 represent a single species. On the basis of priority, S. thermonitrificans is a later subjective synonym of S. thermovulgaris. Similarly, 10 out of the 11 representative thermophilic alkalitolerant isolates had a combination of properties consistent with their classification as S. thermovulgaris. The remaining thermophilic alkalitolerant isolate, Streptomyces strain TA56, merited species status. The name Streptomyces thermoalcalitolerans sp. nov. is proposed for this strain. A neutrophilic thermophilic isolate, Streptomyces strain NAR85, was identified as S. thermodiastaticus.
-
-
-
-
A new rapidly growing mycobacterial species, Mycobacterium murale sp. nov., isolated from the indoor walls of a children's day care centre
Scotochromogenic mycobacterial isolates from water-damaged parts of indoor building materials of a children’s day care centre represented a phenetically and genetically distinct group of strains. A 16S rDNA dendrogram (1243 bp) showed that the closest species to the new strain MA112/96Twas Mycobacterium abscessus. Phylogenetic and phenetic analyses (100 characteristics) grouped the new isolates with M. abscessus, Mycobacterium vaccae, Mycobacterium aurum and Mycobacterium austroafricanum. Ribotyping with Pvull restriction distinguished the 5 isolates from the other 12 most closely related species by the major bands at 6·5–7 kb and 13–15 kb. The cell morphology of the new isolates was typical of mycobacteria, electron microscopy revealed a triple-layered cell wall with an irregular electron-dense outer layer. They grew at 10–37 °C with no growth at 45 °C in 5 d. The gene encoding the secreted 32 kDa protein, specific to mycobacteria, was detected by PCR. The main whole-cell fatty acids were characterized by high tuberculostearic acid 10Me-C18:0 (17% at 28 °C), which increased with increasing growth temperature (22% at 37 °C). The other main fatty acids were C18:1 cis9 and C16:0 (21–20% each), followed by, C17:1 cis9 (14%), C16:1 cis10 (8%) and also a high amount of C20 alcohol (9%). α-Mycolic acids, keto-mycolates and wax esters were present (C60–C90), MK-9(H2) (90%) and MK-8(H2) were the main menaquinones. The cellular phospholipids were phosphatidylethanolamine, phosphatidylinositol, phosphatidyl inositolmannosides and diphosphatidylglycerol. Polyamine content was low. G+C content was 72·9 mol%. The new isolates are proposed as a new species, Mycobacterium murale sp. nov. The type strain is MA112/96T(= DSM 44340T).
-
-
-
Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia)
Two Gram-positive, aerobic spherical actinobacteria were isolated from the rhizoplane of narrow-leaved cattail (Typha angustifolia) collected from a floating mat in the Soroksár tributary of the Danube river, Hungary. Sequence comparisons of the 16S rDNA indicated these isolates to be phylogenetic neighbours of members of the genus Kocuria, family Micrococcaceae, in which they represent two novel lineages. The phylogenetic distinctness of the two organisms TA68Tand TAGA27Twas supported by DNA-DNA similarity values of less than 55% between each other and with the type strains of Kocuria rosea, Kocuria kristinae and Kocuria varians. Chemotaxonomic properties supported the placement of the two isolates in the genus Kocuria. The diagnostic diamino acid of the cell-wall peptidoglycan is lysine, the interpeptide bridge is composed of three alanine residues. Predominant menaquinone was MK-7(H2). The fatty acid pattern represents the straight-chain saturated iso-anteiso type. Main fatty acid was anteiso-C15:0. The phospholipids are diphosphatidylglycerol, phosphatidylglycerol and an unknown component. The DNA base composition of strains TA68Tand TAGA27Tis 69·4 and 69·6 mol% G+C, respectively. Genotypic, morphological and physiological characteristics are used to describe two new species of Kocuria, for which we propose the names Kocuria palustris, type strain DSM 11925Tand Kocuria rhizophila, type strain DSM 11926T.
-
-
-
Reclassification of Brevibacterium oxydans (Chatelain and Second 1966) as Microbacterium oxydans comb. nov.
More LessPhylogenetic and chemoteaxonomic analyses indicate that Brevibacterium oxydans is closely related to species of the genus Microbacterium, namely Microbacterium liquefaciens, Microbacterium luteolum and Microbacterium saperdae. DNA-DNA reassociation values of less than 60% between Brevibacterium oxydans and these three Microbacterium species support the distinctness of this miclclassified Brevibacterium species, which is reclassified as Microbacterium oxydans comb. nov.
-
-
-
Reclassification of Brevibacterium incertum ( Breed 1953 ) as Desemzia incerta gen. nov., comb. nov.
More LessPhylogenetic analysis of 16S rDNA indicates that Brevibacterium incertum is not a member of the genus Brevibacterium but related to species of the genus Carnobacterium. Hence, Brevibacterium incertum is not a member of the class Acrinobactena but belongs to the phylogenetically defined broad Bacillus-Lactobacillus cluster. Based upon properties that taxonomically clearly distinguishes Brevibacterium incertum from species of the phylogenetic sister genus Carnobacterium, Brevibacterium incertum is reclassified as Desemzia incerta gen. nov., comb. nov.
-
-
-
Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov.
More LessEleven strains of a hitherto undescribed Gram-positive, catalase-negative, facultatively anaerobic rod-shaped bacterium from human sources and medical care products were characterized by phenotypic and molecular taxonomic methods. The phenotypic properties of the bacterium were consistent with its assignment to the genus Lactobacillus but it was readily distinguished from all currently described species of this genus by its biochemical characteristics and by SDS-PAGE analysis of its cellular proteins. Comparative 16S rRNA gene sequence analysis demonstrated that the unknown bacterium was a member of rRNA group I Lactobacillus which includes Lactobacillus delbrueckii, the type species of the genus, and close relatives. Lactobacillus gasseri and Lactobacillus johnsonii were the nearest phylogenetic relatives of the unknown bacterium, but 16S rRNA sequence divergence values of >4% clealy showed that it represents a distinct species. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium should be classified in the genus Lactobacillus, as Lactobacillus iners sp. nov. The type strain of Lactobacillus iners is CCUG 28746T.
-
-
-
Corynebacterium terpenotabidum sp. nov., a bacterium capable of degrading squalene
More LessThe taxonomic status of Arthrobacter sp. Y-11T, which was described as a squalene-degrading bacterium, was investigated by chemotaxonomic and genetic methods. The strain possesses wall chemotype IV, MK-9(H2) as the predominant menaquinone, mycolic acids, and straight-chain, saturated and monounsaturated fatty acids, with considerable amounts of tuberculostearic acid. The DNA G+C content is 67·5 mol%. 16S rRNA gene sequence analysis and quantitative DNA-DNA hybridization experiments provided strong evidence that strain Y-11Trepresents a new species within the genus Corynebacterium, for which the name Corynebacterium terpenotabidum sp. nov. is proposed. The type strain of C. terpenotabidum is strain Y-11T(= IFO 14764T).
-
-
-
Paenibacillus dendritiformis sp. nov., proposal for a new pattern-forming species and its localization within a phylogenetic cluster
More LessA new strain capable of forming distinctive patterns during colony development was identified by using a combination of phenotypic characterization, fatty acid analysis and analysis of the 16S rRNA gene sequence. The strain formed either a branched, tip-splitting colony morphology (referred to as the T morphotype) or a chiral pattern exhibiting thinner branches with distinctive curling patterns (referred to as the C morphotype). Isolates of the T morphotype exhibited sequence identities greater than 97% to Paenibacillus thiaminolyticus JCM 7540. Phylogenetic analysis placed the T morphotype within the Paenibacillus cluster on a phylogenetic tree. On the basis of unique colony morphology and distinctive phenotypic characteristics, it is proposed that the pattern-forming isolates should be placed within a new species of Paenibacillus, Paenibacillus dendritiformis sp. nov., the type strain of which is T168T(= 30A1T).
-
- New Taxa - Yeasts
-
-
-
Kodamaea nitidulidarum, Candida restingae and Kodamaea anthophila, three new related yeast species from ephemeral flowers
Three new yeast species were discovered during studies of yeasts associated with ephemeral flowers in Brazil, Australia and Hawaii. Their physiological and morphological similarity to Kodamaea (Pichia) ohmeri suggested a possible relationship to that species, which was confirmed by rDNA sequencing. Kodamaea nitidulidarum and Candida restingae were found in cactus flowers and associated nitidulid beetles in sand dune ecosystems (restinga) of Southeastern Brazil. Over 350 strains of Kodamaea anthophila were isolated from Hibiscus and morning glory flowers (lpomoea spp.) in Australia, and from associated nitidulid beetles and Drosophila hibisci. A single isolate came from a beach morning glory in Hawaii. Expansion of the genus Kodamaea to three species modified the existing definition of the genus only slightly. The type and isotype strains are as follows: K. nitidulidarum strains UFMG96-272T(h+; CBS 8491T) and UFMG96-3941(h–; CBS 84921); Candida restingae UFMG96-276T(CBS 8493T); K. anthophila strains UWO(PS)95-602.1T(h+; CBS 8494T), UWO(PS)91-893.2I(h–; CBS 84951) and UWO(PS)95-725.1I(h–; CBS 8496I).
-
-
-
-
Zygosaccharomyces lentus sp. nov., a new member of the yeast genus Zygosaccharomyces Barker
Unusual growth characteristics of a spoilage yeast, originally isolated from spoiled wholeorange drink and previously identified as Zygosaccharomyces bailii, prompted careful re-examination of its taxonomic position. Small-subunit rRNA gene sequences were determined for this strain and for four other strains also originally described as Z. bailii but which, in contrast to other strains of this species, grew poorly or not at all under aerobic conditions with agitation, failed to grow in the presence of 1 % acetic acid and failed to grow at 30 °C. Comparative sequence analysis revealed that these strains represented a phylogenetically distinct taxon closely related to, but distinct from, Z. bailii and Zygosaccharomyces bisporus. Furthermore, sequence analysis of the internal transcribed spacer (ITS) region showed that, while all five strains had identical ITS2 sequences, they could be subdivided into two groups based on ITS1 sequences. Despite such minor inter-strain sequence variation, these yeasts could readily be distinguished from all other currently described Zygosaccharomyces species by using ITS sequences. On the basis of the phylogenetic results presented, a new species comprising the five strains, Zygosaccharomyces lentus sp. nov., is described and supporting physiological data are discussed, including a demonstration that growth of this species is particularly sensitive to the presence of oxygen. The type strain of Z. lentus is NCYC D2627T.
-
- Evolution, Phylogeny And Biodiversity
-
-
-
Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization
More LessThe phylogenetic relationships of 49 Acinetobacter strains, 46 of which have previously been classified into 18 genomic species by DNA–DNA hybridization studies, were investigated using the nucleotide sequence of gyrB, the structural gene for the DNA gyrase B subunit. The phylogenetic tree showed linkages between genomic species 1 (Acinetobacter calcoaceticus). 2 (Acinetobacter baumannii), 3 and TU13; genomic species 6, BJ15, BJ16 and BJ17; genomic species 5, BJ13 (synonym of TU14) and BJ14; genomic species 7 (Acinetobacter johnsonii), 10 and 11; and genomic species 8 and 9. The phylogenetic grouping of Acinetobacter strains based on gyrB genes was almost congruent with that based on DNA–DNA hybridization studies. Consequently, gyrB sequence comparison can be used to resolve the taxonomic positions of bacterial strains at the level of genomic species. However, minor discrepancies existed in the grouping of strains of genomic species 8, 9 and BJ17. The phylogenetic tree for these strains was reconstructed from the sequence of rpoD, the structural gene for the RNA polymerase σ 70 factor. The latter tree was 100% congruent with the grouping based on DNA–DNA hybridization. The reliability of DNA–DNA hybridization may be superior to that of sequence comparison of a single protein-encoding gene in resolving closely related organisms since the former method measures the homologies between the nucleotide sequences of total genomic DNAs. Three strains that have not been characterized previously by DNA-DNA hybridization seem to belong to two new genomic species, one including strain ATCC 33308 and the other including strains ATCC 31012 and MBIC 1332.
-
-
-
-
RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach
More LessIt has been established that 16S rRNA gene-based phytogeny gives a low resolution between members of the chemoautotrophic ammonia-oxidizing bacteria (AOB) belonging to the β-subclass of the Proteobacteria. In this study, 12 isolates of AOB were ribotyped, and the sequences of the 16S–23S rDNA intergenic spacer region (ISR) were determined and used in a phylogenetic study. 16S and 23S rDNA ribotyping revealed that the AOB studied contain only one rrn operon per genome, in contrast to most bacteria, which have 5–10 copies of the rRNA genes per genome. It is likely that the presence of only one set of rRNA genes is related to the slow growth of the AOB. The 16S and 23S rRNA genes of the AOB were shown to be arranged in the classical way: a 16S rRNA gene, an ISR and a 23S rRNA gene. Despite the close phylogenetic relationship among the AOB, the relative location of the rRNA genes in the genome appears to vary considerably. The size of the ISR was approximately 400 bp in the Nitrosomonas isolates and 645–694 bp in the Nitrosospira isolates, suggesting a species-specific size difference in the ISR. The ISR contained two potential tRNA genes in the 5′ end in all isolates studied. The similarity values between the ISR sequences of the AOB are low (42·9–96·2%) compared with the 16S rDNA sequence similarity values, and therefore the ISR sequences are valuable as a complementary phylogenetic tool in combination with 16S rRNA gene sequences. The phylogenetic analysis of the AOB based on ISR sequences confirms the 16S rRNA gene-based phytogeny but has the benefit of giving a higher resolution.
-
-
-
Phylogeny of marine and freshwater Shewanella: reclassification of Shewanella putrefaciens NCIMB 400 as Shewanella frigidimarina
More LessDissimilatory Fe(III) reduction by Shewanella putrefaciens and related species has generated considerable interest in biochemical characterization of the pathways for anaerobic electron transfer in this organism. Two strains, MR-1 and NCIMB 400, have been extensively used, and several respiratory enzymes have been isolated from each. It has become apparent that significant sequence differences exist between homologous proteins from these strains. The 16S rRNA from NCIMB 400 was sequenced and compared to the sequences from MR-1 and other Shewanella strains. The results indicate that NCIMB 400 is significantly more closely related to the newly identified Shewanella frigidimarina than to the S. putrefaciens type strain. It is therefore proposed that NCIMB 400 should be reclassified as S. frigidimarina.
-
-
-
Genetic structure of the genus Leptospira by multilocus enzyme electrophoresis
More LessThirty strains from the 11 species of the genus Leptospira were studied by multilocus enzyme electrophoresis at 12 enzyme loci, all of which were polymorphic. The mean number of alleles per locus was 6.5. Twenty-five electrophoretic types were distinguished. Grouping of the strains by cluster analysis was in general agreement with species delineation as determined by DNA-DNA hybridization, except for the strains of Leptospira meyeri and Leptospira inadai, which were scattered throughout the genus, reflecting previously recognized taxonomic uncertainties. Analysis of the clonality within Leptospira interrogans sensu stricto indicated that this population was relatively heterogeneous and a lack of gene linkage disequilibrium could not be excluded. There was a genetic discrimination between the pathogenic species and the saprophytic ones. The phenotypically intermediate species (L. inadai and Leptospira fainei) were also genetically separated and were probably closer to the saprophytes than to the pathogens.
-
- Methods
-
-
-
Application of temperature-gradient gel electrophoresis in taxonomy of coryneform bacteria
More LessStrains belonging to the Gram-positive coryneform soil bacteria were screened genotypically by temperature-gradient gel electrophoresis (TGGE). This method allows the sequence-specific separation of amplified fragments of 16S rRNA genes. A total of 115 reference strains representing the majority of the species of the genera Aeromicrobium, Agromyces, Arthrobacter, Aureobacterium, Cellulomonas, Curtobacterium, Nocardioides and Terrabacter were characterized. Depending on the genus investigated, the resolution limit of the technique appeared to be at the species or genus level or intermediate between the two. Aberrant TGGE profiles of strains within particular taxa revealed genomic heterogeneity and generic misclassification of nine strains studied. Beyond that, indications of 16S rRNA gene heterogeneity were found within the genomes of three Curtobacterium strains. The misclassifications revealed by TGGE were confirmed using whole-cell fatty acid methyl ester analysis and subsequent comparison with a database. TGGE has been demonstrated to be a useful tool in bacterial taxonomy.
-
-
-
-
New genus-specific primers for the PCR identification of members of the genera Pseudonocardia and Saccharopolyspora
More LessMembers of the family Pseudonocardiaceae are difficult to identify on the basis of their micromorphology only. The biochemical characterization of each new isolate is a painstaking and time-consuming task which cannot always be undertaken when handling large numbers of strains as is the case in natural product screening programmes. In this study, two sets of genus-specific oligonucleotides were designed which allow rapid detection of members of the genera Pseudonocardia and Saccharopolyspora by means of PCR-specif ic amplification. The genus specificity of these primers was validated on a wide range of collection strains and the primers were subsequently used to study a group of 106 wild-type isolates that possessed morphological characteristics of the family. Out of this group, 51 strains could be identified as members of the genus Pseudonocardia and only nine isolates could be assigned to the genus Saccharopolyspora. The diversity indicated by whole-cell fatty acid profiles of both wild-type and reference strains was compared with that identified using the oligonucleotide primers. The partial 16S rDNA sequencing of representative wild-type strains was used to validate their genus assignment by PCR-specif ic amplification. This study shows the industrial usefulness of the application of these direct identification tools as well as the complementary use of two sources of data, PCR-specif ic amplification results and fatty acid composition, to assess the diversity of a microbial population.
-
-
-
Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris
More LessLactococcus lactis strains were examined for their ability to produce γ-aminobutyric acid (GABA). Results showed that strains of L. lactis subsp. lactis were able to produce this acid, whereas L. lactis subsp. cremoris were not. GABA production thus represents another effective characteristic for distinguishing L. lactis subsp. lactis from L. lactis subsp. cremoris.
-
-
-
Polyamine profiles within genera of the class Actinobacteria with ll-diaminopimelic acid in the peptidoglycan
More LessPolyamine patterns of coryne-and nocardioform representatives of the class Actinobacteria with ll-diaminopimelic acid in the peptidoglycan, comprising strains of the genera Aeromicrobium, Nocardioides, Intrasporangium, Terrabacter, Terracoccus, Propioniferax, Friedmanniella, Microlunatus, Luteococcus and Sporichthya, were analysed. The different polyamine patterns were in good agreement with the phylogenetic heterogeneity within this group of actinomycetes. Strains of the closely related genera Nocardioides and Aeromicrobium were characterized by the presence of cadaverine. The second cluster, consisting of the type strains of the species Friedmanniella antarctica, Propioniferax innocua, Microlunatus phosphovorus and Luteococcus japonicus displayed as a common feature the presence of the two predominant compounds spermidine and spermine. The presence of putrescine was common to the type strains of the species Intrasporangium calvum, Terrabacter tumescens and Terracoccus luteus. Sporichthya polymorpha, which is a representative of a separate line of descent, displayed spermidine as the predominant polyamine. These data indicate that polyamine patterns are suitable for the classification of actinomycetes with ll-diaminopimelic acid in the peptidoglycan.
-
Volumes and issues
-
Volume 75 (2025)
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
