1887

Abstract

The taxonomic position of a yellow-pigmented group of bacteria, isolated from the phyilosphere of grasses was investigated. Results obtained from restriction analysis of amplified 16S rDNA with seven endonucleases (CI, III, I, fI, I, 3A and FI) showed identical restriction patterns for each enzyme of all isolates studied, which suggests that all strains belong to the same species. The grass isolates displayed the characteristics of the genus . They were Gram-negative, aerobic and rod-shaped with polar flagella. Isolates were catalase-positive and oxidase-negative, and unable to oxidize or ferment glucose with the production of acid. The isolates did not reduce nitrate to nitrite but were able to utilize a wide range of compounds individually as a sole carbon source, with preference being given to the utilization of monosaccharides. The disaccharides tested were not utilized as substrates. The DNA base compositions of the tested strains ranged from 60 to 61 mol% G+C. The major isoprenoid quinone of each was ubiquinone Q-9 and hydroxy fatty acids were represented by 3-hydroxydodecanoic acid and 2-hydroxydodecanoic acid. Comparison of 16S rDNA sequences showed that the bacteria were members of the genus , with similarity values between 91·5 and 97·7%. DNA–DNA hybridization studies with closely related neighbours revealed a low level of homology (< 27%), indicating that the isolates represent an individual species. On the basis of phenotypic and phylogenetic analyses a new species, sp. nov. (type strain DSM 11363), is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-297
1999-01-01
2024-03-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-297.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-297&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H. 1997; The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251
    [Google Scholar]
  2. Azegami K., Nishiyama K., Watanabe Y., Kadota I., Ohuchi A., Fukazawa C. 1987; Pseudomonas plantarii sp. nov., the causal agent of rice seedling blight. Int J Syst Bacteriol 37:144–152
    [Google Scholar]
  3. Attafuah A., Bradbury J. F. 1989; Pseudomonas anti-microbica, a new species strongly antagonistic to plant pathogens. J Appl Bacteriol 67:567–573
    [Google Scholar]
  4. Behrendt U., Müller T., Seyfarth W. 1997; The influence of extensification in grassland management on the populations of micro-organisms in the phyllosphere of grasses. Microbiol Res 152:75–85
    [Google Scholar]
  5. De Ley J. 1991; The proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. In The Prokaryotes, 2. II2111–2140 Balows A. others Berlin: Springer-Verlag;
    [Google Scholar]
  6. Elomari M., Coroler L., Hoste B., Gillis M., Izard D., Leclerc H. 1996; DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 46:1138–1144
    [Google Scholar]
  7. Elomari M., Coroler L., Verhille S., Izard D., Leclerc H. 1997; Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 47:846–852
    [Google Scholar]
  8. Ercolani G. L. 1991; Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol 21:35–48
    [Google Scholar]
  9. Gardan L., Bollet C., Abu Ghorrah M., Grimont F., Grimont P. A. D. 1992; DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov. Int J Syst Bacteriol 42:606–612
    [Google Scholar]
  10. Gilardi G. L. 1991; Pseudomonas and related genera. In Manual of Clinical Microbiology, 5.429–453 Balows A. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239
    [Google Scholar]
  12. Haynes W. C., Burkholder W. H. 1957; Genus I Pseudomonas Migula 1894. In Bergey’s Manual of Determinative Bacteriology, 7.89–152 Breed R. S., Murray E. G. D., Smith N. R. Baltimore: Williams & Wilkins;
    [Google Scholar]
  13. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L. 1994; Pseudomonas flavescens sp. nov., isolated from Walnut blight cankers. Int J Syst Bacteriol 44:410–415
    [Google Scholar]
  14. Hirano S. S., Upper C. D. 1992; Bacterial community dynamics. In Microbial Ecology of Leaves271–294 Andrews J. H., Hirano S. S. New York: Springer;
    [Google Scholar]
  15. Holmes B., Owen R. J., Evans A., Malnick H., Wilcox W. R. 1977; Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 27:133–146
    [Google Scholar]
  16. Holmes B., Pinning C. A., Dawson C. A. 1986; A probability matrix for the identification of Gram-negative bacteria that grow on nutrient agar. J Gen Microbiol 132:1827–1842
    [Google Scholar]
  17. Holmes B., Steigerwalt A. G., Weaver R. E., Brenner D. J. 1987; Chryseomonas luteola comb. nov. and Flavimonas oryzihabitans gen. nov., comb, nov., Pseudomonas-like species from human clinical specimens and formerly known, respectively, as groups Ve-1 and Ve-2. Int J Syst Bacteriol 31:245–250
    [Google Scholar]
  18. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994 Bergey’s Manual of Determinative Bacteriology, 9. Baltimore: Williams & Wilkins;
    [Google Scholar]
  19. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  20. Johnson J. 1956; Pod twist: a previously unrecorded bacterial disease of French bean (Phaseolus vulgaris L.). Qld J Agric Sci 13:127–158
    [Google Scholar]
  21. Kersters K. 1991; The genus Deleya . In The Prokaryotes, 2. IV3189–3197 Balows A. others Berlin: Springer-Verlag;
    [Google Scholar]
  22. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307
    [Google Scholar]
  23. Legard D. E., McQuilken M. P., Whipps J. M., Fenlon J. S., Fermor T. R., Thompson I. P., Bailey M. J., Lynch J. M. 1994; Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism. Agric Ecosyst Environ 50:87–101
    [Google Scholar]
  24. Leifson E. 1962a; Pseudomonas spinosa n. sp. Int Bull Bacteriol Nomencl Taxon 12:88–92
    [Google Scholar]
  25. Leifson E. 1962b; The bacterial flora of distilled and stored water. III. New species of the genera Corynebacterium, Flavo-bacterium, Spirillum and Pseudomonas . Int Bull Bacteriol Nomencl Taxon 12:161–170
    [Google Scholar]
  26. Martin K., Schumann P., Rainey F. A., Schuetze B., Groth I. 1997; Janibacter limosus gen. nov., sp. nov., a new actino-mycete with meso-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 47:529–534
    [Google Scholar]
  27. Miyajima K., Tanii A., Akita T. 1983; Pseudomonas fuscova-ginae sp. nov., nom. rev. Int J Syst Bacteriol 33:656–657
    [Google Scholar]
  28. Molin G., Ternstrom A., Ursing J. 1986; Pseudomonas lundensis, a new bacterial species isolated from meat. Int J Syst Bacteriol 36:339–342
    [Google Scholar]
  29. Oigimi C. 1977; Studies on bacterial gall of Chinaberry (Melia Azedarach Lin.), caused by Pseudomonas meliae n. sp. Bull Coll Agric Univ Ryukyus 24:497–556
    [Google Scholar]
  30. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40
    [Google Scholar]
  31. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894, 237AL (Nom. cons. Opin. 5, Jud. Comm. 1952,237). In Bergey’s Manual of Systematic Bacteriology 1141–199 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  32. Palleroni N. J. 1991a; Introduction to the family Pseudomona-daceae . In The Prokaryotes, 2. III3071–3085 Balows A. others Berlin: Springer-Verlag;
    [Google Scholar]
  33. Palleroni N. J. 1991b; Human- and animal-pathogenic pseu-domonads. In The Prokaryotes, 2. III3086–3103 Balows A. others Berlin: Springer-Verlag;
    [Google Scholar]
  34. Palleroni N. J. 1992; Present situation of the taxonomy of aerobic pseudomonads. In Pseudomonas: Molecular Biology and Biotechnology105–115 Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Palleroni N. J., Bradbury J. F. 1993; Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 43:606–609
    [Google Scholar]
  36. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas . Int J Syst Bacteriol 23:333–339
    [Google Scholar]
  37. Pollock T. J. 1993; Gellan-related polysaccharides and the genus Sphingomonas . J Gen Microbiol 139:1939–1945
    [Google Scholar]
  38. Prauser H., Falta R. 1968; Phagensensibilitat, Zellwand-Zusammensetzung und Taxonomie von Actinomyceten. Z Allg Mikrobiol 8:39–46
    [Google Scholar]
  39. Rudolph K., Marvidis A. 1990; Flagella, motility, chemotaxis and helicity. In Methods in Phytobacteriology441–444 Klement Z., Rudolph K., Sands D. C. Budapest: Akademiai Kiado;
    [Google Scholar]
  40. Rudolph K., Roy M. A., Sasser M., Stead D. E., Davis D. E., Swings M., Gosselg F. 1990; Isolation of bacteria. In Methods in Phytobacteriology43–86 Klement Z., Rudolph K., Sands D. C. Budapest: Akademiai Kiado;
    [Google Scholar]
  41. Ryu E. 1938; On the Gram-differentiation of bacteria by the simplest method. J Jpn Soc Vet Sci 17:58–63
    [Google Scholar]
  42. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  43. Schaad N. W., Stall R. E. 1994 Xanthomonas. In Laboratory Guide for Identification of Plant Pathogenic Bacteria, 2.81–94 Schaad N. W., Paul St. MN: American Phytopathological Society Press;
    [Google Scholar]
  44. Schroth M. N., Hildebrand D. C., Panopoulos N. 1991; Phytopathogenic pseudomonads and related plant-associated pseudomonads. In The Prokaryotes, 2. III3104–3131 Balows A. others Berlin: Springer-Verlag;
    [Google Scholar]
  45. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb, nov., respectively. Int J Syst Bacteriol 44:499–510
    [Google Scholar]
  46. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology607–655 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  48. Starr M. P., Jenkins C. L., Bussy L. B., Andrewes A. G. 1977; Chemotaxonomic significance of the xanthomonadins, novel brominated aryl-polyene pigments produced by bacteria of the genus Xanthomonas . Arch Microbiol 113:1–9
    [Google Scholar]
  49. Stead D. E. 1988; Identification of bacteria by computer-assisted fatty acid profiling. Acta Hortic 225:39–46
    [Google Scholar]
  50. Süßmuth R., Eberspächer J., Haag R., Springer W. 1987 Biochemisch-mikrobiologisches Praktikum Stuttgart & New York: Thieme;
    [Google Scholar]
  51. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas . Int J Syst Bacteriol 37:52–59
    [Google Scholar]
  52. Thompson I. P., Bailey M. J., Fenlon J. S. 8 other authors 1993; Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant Soil 150:177–191
    [Google Scholar]
  53. Thornley M. J. 1960; The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J Appl Bacteriol 23:37–52
    [Google Scholar]
  54. Tindall B. J. 1990; Lipid composition of Halobacterium lacus-profundi . FEMS Microbiol Lett 66:199–202
    [Google Scholar]
  55. Ulrich A., Müller T. 1998; Heterogeneity of plant-associated streptococci as characterized by phenotypic features and restriction analysis of PCR-amplined 16S rDNA. J Appl Microbiol 84:293–303
    [Google Scholar]
  56. Van Landschoot A., Rossau R., De Ley J. 1986; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acinetobacter . Int J Syst Bacteriol 36:150–160
    [Google Scholar]
  57. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  58. Willems A., Busse J., Goor M. 8 other authors 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and ‘Pseudomonas carboxy-flava’), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333
    [Google Scholar]
  59. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax a new genus for Pseudomonas facilis, P. delafieldii, EF group 13, EF group 16, and several clinical isolates, with the species Acid-ovorax facilis comb, nov., Acidovorax delafieldii comb. nov. and Acidovorax temperans sp. nov. Int J Syst Bacteriol 40:384–398
    [Google Scholar]
  60. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas ad-haesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119
    [Google Scholar]
  61. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-297
Loading
/content/journal/ijsem/10.1099/00207713-49-1-297
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error