1887

Abstract

The phylogenetic relationships of 49 strains, 46 of which have previously been classified into 18 genomic species by DNA–DNA hybridization studies, were investigated using the nucleotide sequence of , the structural gene for the DNA gyrase B subunit. The phylogenetic tree showed linkages between genomic species 1 (). 2 (), 3 and TU13; genomic species 6, BJ15, BJ16 and BJ17; genomic species 5, BJ13 (synonym of TU14) and BJ14; genomic species 7 (), 10 and 11; and genomic species 8 and 9. The phylogenetic grouping of Acinetobacter strains based on genes was almost congruent with that based on DNA–DNA hybridization studies. Consequently, sequence comparison can be used to resolve the taxonomic positions of bacterial strains at the level of genomic species. However, minor discrepancies existed in the grouping of strains of genomic species 8, 9 and BJ17. The phylogenetic tree for these strains was reconstructed from the sequence of , the structural gene for the RNA polymerase factor. The latter tree was 100% congruent with the grouping based on DNA–DNA hybridization. The reliability of DNA–DNA hybridization may be superior to that of sequence comparison of a single protein-encoding gene in resolving closely related organisms since the former method measures the homologies between the nucleotide sequences of total genomic DNAs. Three strains that have not been characterized previously by DNA-DNA hybridization seem to belong to two new genomic species, one including strain ATCC 33308 and the other including strains ATCC 31012 and MBIC 1332.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-87
1999-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-87.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-87&mimeType=html&fmt=ahah

References

  1. Bifulco J. M., Shirey J. J., Bissonnette G. K. 1989; Detection of Acinetobacter spp. in rural drinking water supplies. Appl Environ Microbiol 55:2214–2219
    [Google Scholar]
  2. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter Iwoffii . Int J Syst Bacteriol 36:228–240
    [Google Scholar]
  3. Bouvet P. J., Jeanjean S. 1989; Delineation of new proteolytic genomic species in the genus Acinetobacter . Res Microbiol 140:291–299
    [Google Scholar]
  4. Bouvet P. J., Jeanjean S. 1995; Differentiation of Acinetobacter calcoaceticus sensu stricto from related Acinetobacter species by electrophoretic polymorphism of malate dehydro-genase, glutamate dehydrogenase and catalase. Res Microbiol 146:773–785
    [Google Scholar]
  5. Brenner D. J., Mcwhorter A. C., Leete Kundson J. K., Steigerwalt A. G. 1982; Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140
    [Google Scholar]
  6. Bustamante V. H., Puente J. L., Sanchez-Lopez F., Bobadilla M., Calva E. 1995; Identification of Campylobacter jejuni and C. coli using the rpoB gene and a cryptic DNA fragment from C. jejuni . Gene 165:1–8
    [Google Scholar]
  7. Ehrenstein B., Bernards A. T., Dijkshoorn L, Gerner-Smidt P., Towner K. J., Bouvet P. J., Daschner F. D., Grundmann H. 1996; Acinetobacter species identification by using tRNA spacer fingerprinting. J Clin Microbiol 34:2414–2420
    [Google Scholar]
  8. Felsenstein J. 1989; phylip - phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Fox G. E., Wisotzkey J. D., Jurtshuk P. J. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  10. Gerner-Smidt P., Tjernberg I., Ursing J. 1991; Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol 29:277–282
    [Google Scholar]
  11. Gerner-Smidt P., Frederiksen W. 1993; Acinetobacter in Denmark: I. Taxonomy, antibiotic susceptibility, and patho-genicity of 112 clinical strains. APMIS 101:815–825
    [Google Scholar]
  12. Gerner-Smidt P., Tjernberg I. 1993; Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS 101:826–832
    [Google Scholar]
  13. Grimont P. A. 1988; Use of DNA reassociation in bacterial classification. Can J Microbiol 34:541–546
    [Google Scholar]
  14. Haake D. A., Summers T. A., McCoy A. M., Schwartzman W. 1997; Heat shock response and groEL sequence of Bartonella henselae and Bartonella quintana . Microbiology 143:2807–2815
    [Google Scholar]
  15. Ibrahim A., Gerner-Smidt P., Liesack W. 1997; Phylogenetic relationships of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 41:837–841
    [Google Scholar]
  16. Janssen P., Maquelin K., Coopman R., Tjernberg I., Bouvet P., Kersters K., Dijkshoorn L. 1997; Discrimination of Acinetobacter genomic species by AFLP fingerprinting. Int J Syst Bacteriol 47:1179–1187
    [Google Scholar]
  17. Johnson J. L. 1973; Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol 23:308–315
    [Google Scholar]
  18. Joly G. M., Bergogne B. E., Vieu J. F. 1990; A study of the relationships between antibiotic resistance phenotypes, phage-typing and biotyping of 117 clinical isolates of Acinetobacter spp. J Hosp Infect 16:49–58
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  20. Juni E. 1972; Interspecies transformation of Acinetobacter: Genetic evidence for a ubiqitous gene. J Bacteriol 112:917–931
    [Google Scholar]
  21. Karlin S., Weinstock G. M., Brendel V. 1995; Bacterial classifications derived from recA protein sequence comparisons. J Bacteriol 111:6881–6893
    [Google Scholar]
  22. Kapur V., Kanjilal S., Hamrick M. R., Li L. L., Whittam T. S., Sawyer S. A., Musser J. M. 1995; Molecular population genetic analysis of the streptokinase gene of Streptococcus pyogenes: mosaic alleles generated by recombination. Mol Microbiol 16:509–519
    [Google Scholar]
  23. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  24. Komukai-Nakamura S., Sugiura K., Yamauchi-lnomata Y., Toki H., Venkateswaran K., Yamamoto S., Tanaka H., Harayama S. 1996; Construction of bacterial consortia that degrade Arabian light crude oil. J Ferment Bioeng 82:570–574
    [Google Scholar]
  25. Kullen M. J., Brady L. J., O’Sullivan D. J. 1997; Evaluation of using a short region of the recA gene for rapid and sensitive speciation of dominant bifidobacteria in the human large intestine. FEMS Microbiol Lett 154:377–383
    [Google Scholar]
  26. Kumar S., Tamura K., Nei M. 1993; mega: Molecular Evolutionary Genetics Analysis, version 1.01. Pennsylvania State University;
    [Google Scholar]
  27. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The ribosomal database project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  28. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40:213–215
    [Google Scholar]
  29. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  30. Nikolskaya T., Fonstein M., Haselkorn R. 1995; Alignment of a 1·2-Mb chromosomal region from three strains of Rhodobacter capsulatus reveals a significantly mosaic structure. Proc Natl Acad SciUSA 92:10609–10613
    [Google Scholar]
  31. Nishimura Y., Ino T., lizuka H. 1988; Acinetobacter radio-resistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 38:209–211
    [Google Scholar]
  32. Nowak A., Kur J. 1995; Genomic species typing of acineto-bacters by polymerase chain reaction amplification of the recA gene. FEMS Microbiol Lett 130:327–332
    [Google Scholar]
  33. Ochman H., Wilson A. C. 1987; Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86
    [Google Scholar]
  34. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: Breathing new life into microbiology. J Bacteriol 176:1–6
    [Google Scholar]
  35. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics67–93 Goodfellow M., Minnikin E. New York: Academic Press;
    [Google Scholar]
  36. Pai S., Esen N., Pan X., Musser J. M. 1997; Routine rapid Mycobacterium species assignment based on species-specific allelic variation in the 65-kilodalton heat shock protein gene (hsp65). Arch Pathol Lab Med 121:859–864
    [Google Scholar]
  37. Philipp W. J., Poulet S., Eiglmeier K. 7 other authors 1996; An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae . Proc Natl Acad SciUSA 93:3132–3137
    [Google Scholar]
  38. Rainey F. A., Lang E., Stackebrandt E. 1994; The phylogenetic structure of the genus Acinetobacter . FEMS Microbiol Lett 124:349–353
    [Google Scholar]
  39. Reisfeld A., Rosenberg E., Gutnick D. 1972; Microbial degradation of crude oil: Factors affecting the dispersion in sea water by mixed and pure cultures. Appl Microbiol 24:363–368
    [Google Scholar]
  40. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  41. Seifert H., Dijkshoorn L, Gerner-Smidt P., Pelzer N., Tjernberg I., Vaneechoutte M. 1997; Distribution of Acinetobacter species on human skin: comparison of phenotypic and geno-typic identification methods. J Clin Microbiol 35:2819–2825
    [Google Scholar]
  42. Stackebrandt E., Goebel B. 1994; Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  43. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics151–194 Goodfellow M., O’Donnell A. G. London: Academic Press;
    [Google Scholar]
  44. Steigerwalt A. G., Fanning G. R., Fife-Ashbury M. A., Brenner D. J. 1976; DNA relatedness among species of Enterobacter and Serratia . Can J Microbiol 22:121–137
    [Google Scholar]
  45. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  46. Tjernberg I., Ursing J. 1989; Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 97:595–605
    [Google Scholar]
  47. Towner K. J. 1997; Clinical importance and antibiotic resistance of Acinetobacter spp. Proceedings of a symposium held on 4-5 November 1996 at Eilat, Israel. J Med Microbiol 46:721–746
    [Google Scholar]
  48. Towner K. J., Bergogne-Bérézin E., Fewson C. A. 1991; Acinetobacter: portrait of a genus. In FEMS Symposium 57 The Biology of Acinetobacter Taxonomy, Clinical Importance, Molecular Biology, Physiology, Industrial Relevance1–24 Towner K. J., Bergogne-Bérézin E., Fewson C. A. New York: Plenum Press;
    [Google Scholar]
  49. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  50. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  51. Yamagishi J., Yoshida H., Yamayoshi M., Nakamura S. 1986; Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli . Mol Gen Genet 204:367–373
    [Google Scholar]
  52. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  53. Yamamoto S., Harayama S. 1996; Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511
    [Google Scholar]
  54. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-87
Loading
/content/journal/ijsem/10.1099/00207713-49-1-87
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error