1887

Abstract

It has been established that 16S rRNA gene-based phytogeny gives a low resolution between members of the chemoautotrophic ammonia-oxidizing bacteria (AOB) belonging to the -subclass of the . In this study, 12 isolates of AOB were ribotyped, and the sequences of the 16S–23S rDNA intergenic spacer region (ISR) were determined and used in a phylogenetic study. 16S and 23S rDNA ribotyping revealed that the AOB studied contain only one operon per genome, in contrast to most bacteria, which have 5–10 copies of the rRNA genes per genome. It is likely that the presence of only one set of rRNA genes is related to the slow growth of the AOB. The 16S and 23S rRNA genes of the AOB were shown to be arranged in the classical way: a 16S rRNA gene, an ISR and a 23S rRNA gene. Despite the close phylogenetic relationship among the AOB, the relative location of the rRNA genes in the genome appears to vary considerably. The size of the ISR was approximately 400 bp in the isolates and 645–694 bp in the isolates, suggesting a species-specific size difference in the ISR. The ISR contained two potential tRNA genes in the 5′ end in all isolates studied. The similarity values between the ISR sequences of the AOB are low (42·9–96·2%) compared with the 16S rDNA sequence similarity values, and therefore the ISR sequences are valuable as a complementary phylogenetic tool in combination with 16S rRNA gene sequences. The phylogenetic analysis of the AOB based on ISR sequences confirms the 16S rRNA gene-based phytogeny but has the benefit of giving a higher resolution.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-123
1999-01-01
2023-05-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-123.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-123&mimeType=html&fmt=ahah

References

  1. Bairoch A. 1993; pc/gene program package, release 6.80. Department of Medical Biochemistry, University of Geneva, Switzerland
    [Google Scholar]
  2. Barry T., Colleran G., Glennon M., Dunican L. K., Gannon F. 1991; The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl 1:51–56
    [Google Scholar]
  3. Belser L. W. 1979; Population ecology of nitrifying bacteria. Annu Rev Microbiol 33:309–333
    [Google Scholar]
  4. Bercovier H., Kafri O., Sela S. 1986; Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun 136:1136–1141
    [Google Scholar]
  5. Brosch R., Lefèvre M., Grimont F., Grimont P. A. D. 1996; Taxonomic diversity of pseudomonads revealed by computer interpretation of ribotyping data. Syst Appl Microbiol 19:541–555
    [Google Scholar]
  6. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978 Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coliProc Natl Acad SciUSA 75:4801–4805
    [Google Scholar]
  7. Church G. M., Gilbert W. 1984 Genomic sequencingProc Natl Acad SciUSA 81:1991–1995
    [Google Scholar]
  8. Donaldson J. M., Henderson G. S. 1989; A dilute medium to determine population size of ammonium oxidizers in soil. Soil Sci Soc Am 53:1608–1611
    [Google Scholar]
  9. Dorsch M., Stackebrandt E. 1992; Some modifications in the procedure of direct sequencing of PCR amplified 16S rDNA. J Microbiol Methods 16:271–279
    [Google Scholar]
  10. Edwards U., Rogall T., Blocker H., Emde M., Bottger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853
    [Google Scholar]
  11. EGCG 1996 Program Manual for the EGCG Package version 8.1.0 March 1996 Peter Rice, The Sanger Centre, Hinxton Hall; Cambridge CB10 IRQ, UK:
    [Google Scholar]
  12. Felsenstein J. 1993; phylip (Phylogeny Inference Package) 3.572c. Department of Genetics University of Washington; Seattle, USA:
    [Google Scholar]
  13. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
    [Google Scholar]
  14. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  15. GCG 1994 Program Manual for the Wisconsin Package, Genetics Computer Group version 8.1 August 1995 575 Science Drive; Madison, WI 53711, USA:
    [Google Scholar]
  16. Graham T., Golsteyn-Thomas E. J., Gannon V. J., Thomas J. E. 1996; Genus- and species specific detection of Listeria monocytogenes using polymerase chain reaction assays targeting the 16S/23S intergenic spacer region of the rRNA operon. Can J Microbiol 42:1155–1162
    [Google Scholar]
  17. Gürtler V., Stanisich V. A. 1996; New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16
    [Google Scholar]
  18. Head I. M., Hiorns W. D., Embley T. M., McCarthy A. J., Saunders J. R. 1993; The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153
    [Google Scholar]
  19. Head I. M., Hiorns W. D., Embley T. M., McCarthy A. J., Saunders J. R. 1995; In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB List no. 54. Int J Syst Bacteriol 45:619–620
    [Google Scholar]
  20. Jiang Q. Q. 1996; Nitrosospira from terrestrial environments, its urease activity and nitrous oxide production. Doctor Scientarium thesis 1996:21, Agricultural University of Norway
    [Google Scholar]
  21. Koops H.-P., Harms H. 1985; Deoxyribonucleic acid homologies among 96 strains of ammonia oxidizing bacteria. Arch Microbiol 141:214–218
    [Google Scholar]
  22. Koops H.-P., Möller U. C. 1992; The lithotrophic ammoniaoxidizing bacteria. In The Prokaryotes2625–2637 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Fischer-Verlag;
    [Google Scholar]
  23. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985 Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysesProc Nat I Acad SciUSA 82:6955–6959
    [Google Scholar]
  24. Leblond-Bourget N., Philippe H., Mangin I., Decaris B. 1996; 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 46:102–111
    [Google Scholar]
  25. Li X., De Boer S. H. 1995; Selection of polymerase chain reaction chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85:837–842
    [Google Scholar]
  26. Lillehaug D., Nes I. F., Birkeland N. K. 1997; A highly efficient and stable system for site-specific integration of genes and plasmids into the phage phiLC3 attachment site (attB) of the Lactococcus lactis chromosome. Gene 188:129–36
    [Google Scholar]
  27. McCaig A. E., Embley T. M., Prosser J. I. 1994; Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol Lett 120:363–368
    [Google Scholar]
  28. MacDonald R. M., Spokes J. R. 1980; A selective and diagnostic medium for ammonia oxidising bacteria. FEMS Microbiol Lett 8:143–145
    [Google Scholar]
  29. Mobarry B. K., Wagner M., Urbain V., Rittmann B. E., Stahl D. A. 1996; Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162
    [Google Scholar]
  30. Moreira D., Amils R. 1996; PCR-mediated detection of the chemolithotrophic bacterium Thiobacillus cuprinus using 23S rDNA and 16S/23S rDNA intergenic spacer region-targeted oligonucleotide primers. FEMS Microbiol Lett 142:289–293
    [Google Scholar]
  31. Navarro E., Fernandez M. P., Grimont F., Claysjosserand A., Bardin R. 1992a; Genomic heterogeneity of the genus Nitrobacter. Int J Syst Bacteriol 42:554–560
    [Google Scholar]
  32. Navarro E., Simonet P., Normand P., Bard in R. 1992b; Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol 157:107–115
    [Google Scholar]
  33. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  34. Pang H., Winkler H. H. 1993; Copy number of the 16S rRNA gene in Rickettsia prowazekii. J Bacteriol 175:3893–3896
    [Google Scholar]
  35. Pearson W. R. 1990; Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzymol 183:63–98
    [Google Scholar]
  36. Pearson W. R., Lipman D. J. 1988 Improved tools for biological sequence comparisonProc Natl Acad SciUSA 85:2444–2448
    [Google Scholar]
  37. Pommerening-Röser A., Rath G., Koops H.-P. 1996; Phylogenetic diversity within the genus Nitrosomonas. Syst Appl Microbiol 19:344–351
    [Google Scholar]
  38. Riedl K.-H. J., Britz T. J. 1996; Justification of the ‘classical’ Propionibacterium species concept by ribotyping. Syst Appl Microbiol 19:370–380
    [Google Scholar]
  39. Rijpens N. P., Jannes G., Van Asbroeck M., Rossau R., Herman L. M. F. 1996; Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes. Appl Environ Microbiol 62:1683–1688
    [Google Scholar]
  40. Rudner R., Studamire B., Jarvis E. D. 1994; Determination of restriction fragment length polymorphism in bacteria using ribosomal RNA genes. Methods Enzymol 235:184–196
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Schwartz J. J., Gazumyan A., Schwartz I. 1992; rRNA gene organization in the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 174:3757–3765
    [Google Scholar]
  43. Smart C. D., Schneider B., Blomquist C. L., Guerra L. J., Harrison N. A., Ahrens U., Lorenz K. H., Seemuller E., Kirkpatrick B. C. 1996; Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl Environ Microbiol 62:2988–2993
    [Google Scholar]
  44. Teske A., Aim E., Regan J. M., Toze S., Rittmann B. E., Stahl D. A. 1994; Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176:6623–6630
    [Google Scholar]
  45. Utåker J. B., Nes I. F. 1998; A qualitative evaluation of the published oligonucleotides specific for the 16S rDNA gene sequences of the ammonia-oxidizing bacteria. Syst Appl Microbiol 21:72–88
    [Google Scholar]
  46. Utåker J. B., Bakken L., Jiang Q. Q., Nes I. F. 1995; Phylogenetic analysis of seven new isolates of ammonia-oxidizing bacteria based on 16S rRNA gene sequences. Syst Appl Microbiol 18:549–559
    [Google Scholar]
  47. Wagner M., Rath G., Amann R., Koops H.-P., Schleifer K. H. 1995; In-situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18:251–264
    [Google Scholar]
  48. Watson S. W., Bock E., Harms H., Koops H.-P., Hooper A. B. 1989; Nitrifying bacteria. In Bergey’s Manual of Systematic Bacteriology1808–1834 Staley J. T., Bryant M. P., Pfenning N., Holt J. G. Baltimore: Williams: Wilkins;
    [Google Scholar]
  49. Yoon J.-H., Lee S. T., Kim S.-B., Goodfellow M., Park Y.-H. 1997; Inter- and intraspecific genetic analysis of the genus Saccharomonospora with 16S to 23S ribosomal DNA (rDNA) and 23S to 5S rDNA internally transcribed spacer sequences. Int J Syst Bacteriol 47:661–669
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-123
Loading
/content/journal/ijsem/10.1099/00207713-49-1-123
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error