-
Volume 146,
Issue 10,
2000
Volume 146, Issue 10, 2000
- Pseudomonas: Biology And Diversity
-
-
-
Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes
The GenBank accession numbers for the sequences determined in this work are: gyrB, D37926, D37297, D86005–D86019 and AB039381–AB039492; rpoD, D86020–D86036 and AB039493–AB039624.
Phylogenetic analysis of the genus Pseudomonas was conducted by using the combined gyrB and rpoD nucleotide sequences of 31 validly described species of Pseudomonas (a total of 125 strains). Pseudomonas strains diverged into two major clusters designated intrageneric cluster I (IGC I) and intrageneric cluster II (IGC II). IGC I was further split into two subclusters, the ‘P. aeruginosa complex’, which included P. aeruginosa, P. alcaligenes, P. citronellolis, P. mendocina, P. oleovorans and P. pseudoalcaligenes, and the ‘P. stutzeri complex’, which included P. balearica and P. stutzeri. IGC II was further split into three subclusters that were designated the ‘P. putida complex’, the ‘P. syringae complex’ and the ‘P. fluorescens complex’. The ‘P. putida complex’ included P. putida and P. fulva. The ‘P. syringae complex’ was the cluster of phytopathogens including P. amygdali, P. caricapapayae, P. cichorii, P. ficuserectae, P. viridiflava and the pathovars of P. savastanoi and P. syringae. The ‘P. fluorescens complex’ was further divided into two subpopulations, the ‘P. fluorescens lineage’ and the ‘P. chlororaphis lineage’. The ‘P. fluorescens lineage’ contained P. fluorescens biotypes A, B and C, P. azotoformans, P. marginalis pathovars, P. mucidolens, P. synxantha and P. tolaasii, while the ‘P. chlororaphis lineage’ included P. chlororaphis, P. agarici, P. asplenii, P. corrugata, P. fluorescens biotypes B and G and P. putida biovar B. The strains of P. fluorescens biotypes formed a polyphyletic group within the ‘P. fluorescens complex’.
-
-
-
-
Quantification of biofilm structures by the novel computer program comstat
The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, Pseudomonas putida, P. aureofaciens, P. fluorescens and P. aeruginosa, tagged with the green fluorescent protein (GFP) were grown in flow chambers with a defined minimal medium as substrate. Analysis by the COMSTAT program of four variables describing biofilm structure – mean thickness, roughness, substratum coverage and surface to volume ratio – showed that the four Pseudomonas strains represent different modes of biofilm growth. P. putida had a unique developmental pattern starting with single cells on the substratum growing into micro-colonies, which were eventually succeeded by long filaments and elongated cell clusters. P. aeruginosa colonized the entire substratum, and formed flat, uniform biofilms. P. aureofaciens resembled P. aeruginosa, but had a stronger tendency to form micro-colonies. Finally, the biofilm structures of P. fluorescens had a phenotype intermediate between those of P. putida and P. aureofaciens. Analysis of biofilms of P. aureofaciens growing on 0·03 mM, 0·1 mM or 0·5 mM citrate minimal media showed that mean biofilm thickness increased with increasing citrate concentration. Moreover, biofilm roughness increased with lower citrate concentrations, whereas surface to volume ratio increased with higher citrate concentrations.
-
-
-
Experimental reproducibility in flow-chamber biofilms
The structural organization of microbial communities is influenced by many factors, e.g. nutrient composition, shear stress and temperature. This paper presents a general method for quantitative comparison of biofilm structures and assessment of experimental reproducibility between independent biofilm experiments. By using a novel computer program, COMSTAT, biofilm structures of Pseudomonas aeruginosa and an isogenic rpoS mutant were quantified. The strains were tagged with the green fluorescent protein (GFP) and grown in flow chambers with a defined minimal medium as substrate. Three independent rounds of biofilm experiments were performed and in each round, each of the two variants was grown in two separate channels. Nine image stacks were acquired in each channel 146 h after inoculation. An analysis of variance model incorporating the factors experiment round, bacterial strain, channel number and image stack number was used to analyse the data calculated by COMSTAT. Experimental reproducibility was verified by estimating the magnitude of the variance of the effects round () and the interaction between bacterial strain and round (). Mean thickness of the wild-type and rpoS mutant biofilms was estimated at 6·31 μm (SE 0·81 μm) and 16·85 μm (SE 0·87 μm), respectively.
-
-
-
Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0
More LessPseudomonas fluorescens CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that substantially contributes to this strain’s biocontrol ability. Cyanogenesis is induced by oxygen-limiting conditions, but abolished by iron depletion. In P. fluorescens, the anaerobic regulator ANR and the global activator GacA are both required for the maximal expression of the HCN biosynthetic genes hcnABC. The molecular basis of this regulation by ANR and GacA was investigated under conditions of oxygen and iron limitation. A promoter deletion analysis using a translational hcnA′–′lacZ fusion revealed that a conserved FNR/ANR recognition sequence in the −40 promoter region was necessary and sufficient for the regulation by ANR in response to oxygen limitation. Stimulation of hcnA′–′lacZ expression by the addition of iron also depended on the presence of ANR and the FNR/ANR box, but not on GacA, suggesting that in addition to acting as an oxygen-sensitive protein, ANR also responds to iron availability. Expression of the translational hcnA′–′lacZ fusion remained GacA-dependent in hcn promoter mutants that were no longer responsive to ANR, in agreement with earlier evidence for a post-transcriptional regulatory mechanism under GacA control. These data support a model in which cyanogenesis is sequentially activated by ANR at the level of transcription and by components of the GacA network at the level of translation.
-
-
-
Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa
Vanadium is a metal that under physiological conditions can exist in two oxidation states, V(IV) (vanadyl ion) and V(V) (vanadate ion). Here, it was demonstrated that both ions can form complexes with siderophores. Pseudomonas aeruginosa produces two siderophores under iron-limiting conditions, pyoverdine (PVD) and pyochelin (PCH). Vanadyl sulfate, at a concentration of 1–2 mM, strongly inhibited growth of P. aeruginosa PAO1, especially under conditions of severe iron limitation imposed by the presence of non-utilizable Fe(III) chelators. PVD-deficient mutants were more sensitive to vanadium than the wild-type, but addition of PVD did not stimulate their growth. Conversely, PCH-negative mutants were more resistant to vanadium than the wild-type strain. Both siderophores could bind and form complexes with vanadium after incubation with vanadyl sulfate (1:1, in the case of PVD; 2:1, in the case of PCH). Although only one complex with PVD, V(IV)–PVD, was found, both V(IV)– and V(V)–PCH were detected. V–PCH, but not V–PVD, caused strong growth reduction, resulting in a prolonged lag phase. Exposure of PAO1 cells to vanadium induced resistance to the superoxide-generating compound paraquat, and conversely, exposure to paraquat increased resistance to V(IV). Superoxide dismutase (SOD) activity of cells grown in the presence of V(IV) was augmented by a factor of two. Mutants deficient in the production of Fe-SOD (SodB) were particularly sensitive to vanadium, whilst sodA mutants deficient for Mn-SOD were only marginally affected. In conclusion, it is suggested that V–PCH catalyses a Fenton-type reaction whereby the toxic superoxide anion is generated, and that vanadium compromises PVD utilization.
-
-
-
Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor
More LessFerric iron is an essential element for microbial growth but its water solubility in aerobic environments is considered to be low. Thus it is a limiting resource for which microbes must compete in natural habitats. Since competition for iron occurs at the level of individual cells, knowledge of the variability in iron bioavailability to such individuals is required to assess the nature of the competition in these habitats. Ferric iron availability to cells of Pseudomonas syringae was assessed by quantifying the fluorescence intensity of single cells harbouring a plasmid-borne transcriptional fusion of an iron-regulated promoter from a locus encoding a membrane receptor for a pyoverdine siderophore with a reporter gene encoding green fluorescent protein (GFP) following fluorescence microscopy. Cells of this iron biosensor exhibited iron-dependent GFP fluorescence that was inversely proportional to the amount of iron added to the media, and which differed by over 20-fold in iron-replete compared to iron-deplete culture media. Cells cultured in a medium of a given iron content exhibited a very narrow range of fluorescence intensities. In contrast, the fluorescence intensity of cells of the biosensor strain recovered from the rhizosphere or phylloplane of inoculated bean plants varied greatly. The distribution of fluorescence intensities was strongly right-hand skewed, with about 10% of the cells exhibiting substantially higher GFP fluorescence than that of the median cell. Cells of a positive control strain, harbouring a fusion of the constitutive nptII promoter with the gfp reporter gene, exhibited uniform GFP fluorescence both in culture media and on plants. These results indicate that there is substantial heterogeneity of iron biovailability to cells of P. syringae on plants, with only a small subset of cells experiencing low iron availability. Such heterogeneity places constraints on models of interactions of bacteria in natural habitats that are based on competition for limited iron.
-
-
-
Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000
More LessIn P. syringae, the co-ordinated regulation of different systems required for pathogenicity and virulence seems logical but has not been established. This question was addressed in the present study by analysing production of the phytotoxin coronatine (COR) in defined hrp/hrc mutants of P. syringae pv. tomato DC3000. COR was produced in vitro by mutants of DC3000 defective in hrcC, which encodes an outer-membrane protein required for type III-mediated secretion. When inoculated in plants, hrcC mutants produced chlorotic regions indicative of COR production, but lacked the necrotic lesions produced by the wild-type DC3000. Furthermore, a DC3000 mutant containing a polar mutation in hrcC, which inactivates hrcC, hrpT and hrpV, produced significantly higher amounts of COR than the wild-type strain in vitro. This mutant was able to produce COR earlier and at lower cell densities than the wild-type. The results indicate that the hrp/hrc secretion system is not required for COR production, but mutations in this system may have regulatory effects on the production of virulence factors such as COR.
-
-
-
Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea
More LessThe GenBank accession numbers for the nucleotide sequences of mutants 560, 561, 562, 563, 564, 568, 570, 574, 590, 591, 593, 596, 599, 601, 605, 608, 613, 617, 618, 626 and 632 determined in this work are AF274322–AF274342, respectively.
Plant-pathogenic bacteria may sense variations in environmental factors, such as temperature, to adapt to plant-associated habitats during pathogenesis or epiphytic growth. The bacterial blight pathogen of soybean, Pseudomonas syringae pv. glycinea PG4180, preferentially produces the phytotoxin coronatine at 18 °C and infects the host plant under conditions of low temperature and high humidity. A miniTn5-based promoterless glucuronidase (uidA) reporter gene was used to identify genetic loci of PG4180 preferentially expressed at 18 or 28 °C. Out of 7500 transposon mutants, 61 showed thermoregulated uidA expression as determined by a three-step screening procedure. Two-thirds of these mutants showed an increased reporter gene expression at 18 °C whilst the remainder exhibited higher uidA expression at 28 °C. MiniTn5-uidA insertion loci from these mutants were subcloned and their nucleotide sequences were determined. Several of the mutants induced at 18 °C contained the miniTn5-uidA insertion within the 32·8 kb coronatine biosynthetic gene cluster. Among the other mutants with increased uidA expression at 18 °C, insertions were found in genes encoding formaldehyde dehydrogenase, short-chain dehydrogenase and mannuronan C-5-epimerase, in a plasmid-borne replication protein, and in the hrpT locus, involved in pathogenicity of P. syringae. Among the mutants induced at 28 °C, insertions disrupted loci with similarities to a repressor of conjugal plasmid transfer, UV resistance determinants, an isoflavanoid-degrading enzyme, a HU-like DNA-binding protein, two additional regulatory proteins, a homologue of bacterial adhesins, transport proteins, LPS synthesis enzymes and two proteases. Genetic loci from 13 mutants did not show significant similarities to any database entries. Results of plant inoculations showed that three of the mutants tested were inhibited in symptom development and in planta multiplication rates. Temperature-shift experiments suggested that all of the identified loci showed a rather slow induction of expression upon change of temperature.
-
-
-
The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase
The GenBank accession number for the sequence determined in this work is AF286536.
Several different species of Pseudomonas produce N-acylhomoserine lactones (AHLs), quorum-sensing signal molecules which are involved in the cell-density-dependent control of secondary metabolite and virulence gene expression. When Pseudomonas fluorescens F113 was cross-streaked against AHL biosensors capable of sensitively detecting either short (C4–C8) or long (C10–C14) acyl chain AHLs, no activity was detectable. However, by extracting cell-free stationary-phase culture supernatants with dichloromethane followed by reverse-phase HPLC, three distinct fractions were obtained capable of activating the AHL biosensors. Three AHLs were subsequently characterized using high-resolution MS and chemical synthesis. These were (i) N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone (3OH,C14:1-HSL), a molecule previously known as the Rhizobium leguminosarum small bacteriocin as a consequence of its growth inhibitory properties, (ii) N-decanoylhomoserine lactone (C10-HSL) and (iii) N-hexanoylhomoserine lactone (C6-HSL). A gene (hdtS) capable of directing synthesis of all three P. fluorescens AHLs in Escherichia coli was cloned and sequenced. In vitro transcription/translation of hdtS yielded a protein of approximately 33 kDa capable of directing the synthesis of 3OH,C14:1-HSL, C10-HSL and C6-HSL in E. coli. HdtS does not belong to either of the known AHL synthase families (LuxI or LuxM) and is related to the lysophosphatidic acid acyltransferase family. HdtS may therefore constitute a member of a third protein family capable of AHL biosynthesis.
-
-
-
Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa
The pathogenesis of Pseudomonas aeruginosa is associated with expression of virulence factors, many of which are controlled by two N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Escherichia coli strains equipped with a luxR-based monitor system expressing green fluorescent protein (GFP) in the presence of exogenous AHL molecules were used to detect the production of AHLs from P. aeruginosa in vivo. Mice were challenged intratracheally with alginate beads containing P. aeruginosa and E. coli and killed on different days after the challenge. By means of confocal scanning laser microscopy, GFP-expressing E. coli bacteria could be detected in the lung tissues, indicating production and excretion of AHL molecules in vivo by the infecting P. aeruginosa. AHL signals were detected mainly in lung tissues exhibiting severe pathological changes. These findings support the view that expression of AHL molecules by P. aeruginosa during infection coincides with its pathogenesis.
-
-
-
Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography–tandem mass spectrometry
More LessIsolates of Pseudomonas aeruginosa from chronic lung infections in cystic fibrosis (CF) patients have phenotypes distinct from those initially infecting CF patients, as well as from other clinical or environmental isolates. To gain a better understanding of the differences in these isolates, protein expression was followed using two-dimensional (2-D) gel electrophoresis and protein identification by peptide sequencing using micro-capillary column liquid chromatography–tandem mass spectrometry (μLC/MS/MS). The isolates selected for this analysis were from the sputum of a CF patient: strain 383 had a nonmucoid phenotype typical of isolates from the environment, and strain 2192, obtained from the same patient, had a mucoid phenotype typical of isolates from chronic CF lung infections. Strains 383 and 2192 were confirmed to be genetically identical by restriction endonuclease analysis, random amplified polymorphic DNA-PCR, and pulsed-field gel electrophoresis. Conditions of protein extraction were optimized for consistent high-resolution separation of several hundred proteins from these clinical isolates as detected by Coomassie staining of 2-D gels. Fourteen proteins were selected for analysis; this group included those whose expression was common between both strains as well as unique for each strain. The proteins were identified by μLC/MS/MS of the peptides produced by an in-gel tryptic digestion and compared to translated data from the Pseudomonas Genome Project; optimization of this technique has allowed for the comparison of proteins expressed by strains 383 and 2192.
-
-
-
migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide
Pseudomonas aeruginosa is an opportunistic human pathogen which poses a major threat to patients with cystic fibrosis (CF). Excessive amounts of mucus present in the lungs of CF patients promotes the colonization of P. aeruginosa. The migA gene, encoding a putative glycosyltransferase, has been shown to be highly inducible by respiratory mucus derived from CF patients. In this study, it is further demonstrated by population transcript analysis that the migA gene is highly expressed in the CF lung environment. Deletion analysis of the migA promoter identified a las-box-like sequence commonly found in promoters that are responsive to quorum sensing regulation. Further analysis of migA expression in quorum-sensing-defective strains, as well as its expression in response to autoinducer molecules, demonstrated that migA is regulated by the RhlI/RhlR quorum sensing regulatory system. Functionally, as the MigA sequence homology data suggested, the migA gene indeed affects the structure of LPS in P. aeruginosa. Increased expression of the migA gene results in a loss of core-plus-one LPS, while having no obvious effect on the long-chain O-antigen-bearing LPS. Although the exact biological role of the core-plus-one LPS is not clear, these experimental results suggest that migA up-regulation in the CF lung environment is part of the adaptive response which confers on P. aeruginosa a survival advantage.
-
-
-
Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis
More LessA nonmucoid clinical isolate of Pseudomonas aeruginosa, strain 808, elaborated ATP-dependent and ATP-independent types of cytotoxic factors in the growth medium. These cytotoxic factors, active against macrophages, were secreted during the exponential phase of growth in a complex medium. Commensurate with the appearance of the cytotoxic activities in the cell-free growth medium, several ATP-utilizing enzymic activities, such as adenylate kinase, nucleoside diphosphate kinase and 5′-nucleotidase (ATPase and/or phosphatase), were detected in the medium. These ATP-utilizing enzymes are believed to convert external ATP, presumably effluxed from macrophages, to various adenine nucleotides, which then activate purinergic receptors such as P2Z, leading to enhanced macrophage cell death. Pretreatment of macrophages with periodate-oxidized ATP (oATP), which is an irreversible inhibitor of P2Z receptor activation, prevented subsequent ATP-induced macrophage cell death. A second type of cytotoxic factor(s) operated in an ATP-independent manner such that it triggered activation of apoptotic processes in macrophages, leading to proteolytic conversion of procaspase-3 to active caspase-3. This cytotoxic factor(s) did not appear to act on procaspase-3 present in macrophage cytosolic extracts. Intact macrophages, when exposed to the cytotoxic factor(s) for 6–16 h, underwent apoptosis and demonstrated the presence of active caspase-3 in their cytosolic extracts. Interestingly, two redox proteins, azurin and cytochrome c 551, were detected in the cytotoxic preparation. When cell-line-derived or peritoneal macrophages or mast cells were incubated overnight with Q-Sepharose column flow-through fraction or with a mixture of azurin and cytochrome c 551, they underwent extensive cell death due to induction of apoptosis.
-
-
-
Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS
More LessPseudomonas aeruginosa is an opportunistic bacterial pathogen that primarily infects immunocompromised individuals and patients with cystic fibrosis. Using a tissue culture system, invasive strains of P. aeruginosa were discovered to induce apoptosis at high frequency in HeLa and other epithelial and fibroblast cell lines. This apoptotic phenotype in the infected cells was determined by several criteria including (i) visual changes in cell morphology, (ii) induction of chromatin condensation and nuclear marginalization, (iii) the presence of a high percentage of cells with subG1 DNA content, and (iv) activation of caspase-3 activity. Induction of the type III secretion machinery, but not invasion of P. aeruginosa is required for induction of apoptosis. The apoptosis phenotype is independent of the cytoskeletal rearrangements that occur in the host cell early after infection. Mutants in P. aeruginosa exoS fail to induce apoptosis and complementation with wild-type exoS restored the apoptosis-inducing capacity, demonstrating that ExoS is the effector molecule. Analysis of exoS activity mutants shows that the ADP-ribosylating capacity of ExoS is essential for inducing the apoptotic pathway.
-
-
-
Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides
More LessResistance to the polycationic antibiotic polymyxin B and expression of the outer-membrane protein OprH in the opportunistic pathogen Pseudomonas aeruginosa both involve the PhoP-PhoQ two-component regulatory system. The genes for this system form an operon with oprH, oprH-phoP-phoQ, that responds to Mg2+ starvation and PhoP levels. In this study, the Mg2+-regulated promoter for this operon was mapped upstream of oprH by primer-extension experiments. An oprH::xylE-GmR mutant H855 was constructed and measurement of the catechol 2,3-dioxygenase activity expressed from this transcriptional fusion provided evidence for a second, weak promoter for phoP-phoQ. Wild-type P. aeruginosa PAO1 strain H103 was found to exhibit Mg2+-regulated resistance to the α-helical antimicrobial cationic peptide CP28 in addition to its previously characterized resistance to polymyxin B. Resistance to this peptide was unchanged in the OprH-null mutant H855 and a PhoP-null mutant H851. In contrast, PhoQ-null mutant H854 demonstrated constitutive CP28 resistance. Northern blot analysis revealed constitutive expression of phoP in this strain, implicating PhoP-PhoQ in the resistance of P. aeruginosa to cationic peptides. Furthermore, all three null-mutant strains demonstrated increased resistance to the aminoglycoside antibiotics streptomycin, kanamycin and amikacin. Two additional mutant strains, H895 and H896, were constructed that carried unmarked deletions in oprH and were found to exhibit aminoglycoside susceptibility equivalent to that of the wild-type. This result provided definitive evidence that OprH is not involved in P. aeruginosa aminoglycoside resistance and that the changes in resistance in strain H855 and a previously reported oprH mutant were due to polar effects on phoP-phoQ rather than loss of OprH expression. A role for PhoP-PhoQ in resistance to aminoglycosides is envisaged that is distinct from that in resistance to cationic peptides and polymyxin B.
-
-
-
Visualization of DNA–protein intermediates during activation of the Pu promoter of the TOL plasmid of Pseudomonas putida
More LessThe ATP-dependent multimerization process undergone by the σ54-dependent activator XylR of the TOL plasmid pWW0 of Pseudomonas putida when bound to the upstream activating sequences (UAS) of the cognate Pu promoter was examined by transmission electron microscopy (TEM). To this end, supercoiled DNA templates were combined with increasing concentrations of the constitutive XylR variant XylRΔA, with or without ATP or its non-hydrolysable analogue ATPγS, and the resulting complexes were visualized by TEM. The different types of DNA–protein association were analysed and a statistical study of the frequency of the various forms was made. ATP appeared to establish an equilibrium between different molecular associations, as well as major changes in the physical shape of the DNA–protein complexes. The formation of higher nucleoprotein structures frequently bearing DNA bends became manifest. Such complexes often engaged otherwise separated UAS-containing plasmids, indicating that the ATP-driven multimer included XylR molecules recruited in trans. Whilst ATP caused the different types of XylR–DNA complex to occur at quite balanced frequencies, ATPγS appeared to displace the distribution predominantly towards the higher order forms. These data are compatible with the notion that each time ATP is hydrolysed the transcriptional activation complex is disassembled.
-
-
-
Activation of Pseudomonas aeruginosa elastase in Pseudomonas putida by triggering dissociation of the propeptide–enzyme complex
More LessThe propeptide of Pseudomonas aeruginosa elastase functions both as an intramolecular chaperone required for the folding of the enzyme and as an inhibitor that prevents activity of the enzyme before its secretion into the extracellular medium. Since expression of the lasB gene, which encodes elastase, in Pseudomonas putida did not result in extracellular elastase activity, it has been suggested that the enzyme is not recognized by the Xcp secretion machinery of the heterologous host. Here, it is demonstrated that the proenzyme is normally processed in P. putida and that it is indeed not actively secreted by the Xcp machinery. Nevertheless, substantial amounts of the enzyme were detected in the extracellular medium. Co-immunoprecipitations revealed that the extracellular enzyme was associated with the propeptide, which explains the lack of enzymic activity. Since the propeptide–enzyme complex in P. putida apparently does not dissociate spontaneously, it is concluded that a host-specific factor is required to induce this event. Mutants were selected which showed extracellular elastase activity. Two mutations, located within the lasB gene, were further characterized. These mutations, resulting in the substitution of Ala and Thr at positions −15 and −153, respectively, of the propeptide (where position +1 is defined as the first residue of the mature enzyme) destabilized the propeptide–enzyme complex. It is concluded that Ala-15 and Thr-153 are required for the inhibitor function, but not for the chaperone function of the propeptide.
-
- Systematics And Evolution
-
-
-
Genetic relationships between clinical and environmental Vibrio cholerae isolates based on multilocus enzyme electrophoresis
More LessA total of 107 isolates of Vibrio cholerae, including 29 strains belonging to serogroup O139, were studied using multilocus enzyme electrophoresis (MLEE) to determine allelic variation in 15 housekeeping enzyme loci. All loci were polymorphic and 99 electrophoretic types (ETs) were identified from the total sample. No significant clustering of isolates was detected in the dendrogram generated from a matrix of coefficients of distances with respect to serogroup, biotype or country of isolation. The mean genetic diversity of this V. cholerae population (H=0·50) was higher than reported previously. Linkage disequilibrium analysis of the MLEE data showed a clonal structure for the entire population, but not in some of the population subgroups studied. This suggests an epidemic population structure. The results showed that the O139 strains were not clustered in a unique ET, in contrast to previous MLEE studies. This higher genetic variation of the O139 serogroup is concordant with ribotyping studies. The results also confirm that the O139 and O1 ElTor isolates are genetically more closely related to each other than to all the other subpopulations of V. cholerae studied.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
