1887

Abstract

Plant-pathogenic bacteria may sense variations in environmental factors, such as temperature, to adapt to plant-associated habitats during pathogenesis or epiphytic growth. The bacterial blight pathogen of soybean, pv. PG4180, preferentially produces the phytotoxin coronatine at 18 °C and infects the host plant under conditions of low temperature and high humidity. A miniTn-based promoterless glucuronidase () reporter gene was used to identify genetic loci of PG4180 preferentially expressed at 18 or 28 °C. Out of 7500 transposon mutants, 61 showed thermoregulated expression as determined by a three-step screening procedure. Two-thirds of these mutants showed an increased reporter gene expression at 18 °C whilst the remainder exhibited higher expression at 28 °C. MiniTn- insertion loci from these mutants were subcloned and their nucleotide sequences were determined. Several of the mutants induced at 18 °C contained the miniTn- insertion within the 328 kb coronatine biosynthetic gene cluster. Among the other mutants with increased expression at 18 °C, insertions were found in genes encoding formaldehyde dehydrogenase, short-chain dehydrogenase and mannuronan C-5-epimerase, in a plasmid-borne replication protein, and in the locus, involved in pathogenicity of . Among the mutants induced at 28 °C, insertions disrupted loci with similarities to a repressor of conjugal plasmid transfer, UV resistance determinants, an isoflavanoid-degrading enzyme, a HU-like DNA-binding protein, two additional regulatory proteins, a homologue of bacterial adhesins, transport proteins, LPS synthesis enzymes and two proteases. Genetic loci from 13 mutants did not show significant similarities to any database entries. Results of plant inoculations showed that three of the mutants tested were inhibited in symptom development and multiplication rates. Temperature-shift experiments suggested that all of the identified loci showed a rather slow induction of expression upon change of temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2457
2000-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462457a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2457&mimeType=html&fmt=ahah

References

  1. Banta L. M., Bohne J., Lovejoy S. D., Dostal K. 1998; Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaptation. J Bacteriol 180:6597–6606
    [Google Scholar]
  2. Beattie G. A., Lindow S. E. 1999; Bacterial colonization of leaves: a spectrum of strategies. Phytopathology 89:353–359 [CrossRef]
    [Google Scholar]
  3. Beld M., Martin C., Huits H., Stuitje A. R., Gerats A. G. M. 1989; Flavonoid synthesis in Petunia hybrida: partial characterization of dihY. Plant Mol Biol 13:491–502 [CrossRef]
    [Google Scholar]
  4. Bender C. L., Stone H. E., Sims J. J., Cooksey D. A. 1987; Reduced pathogen fitness of Pseudomonas syringae pv. tomato Tn5 mutants defective in coronatine production. Physiol Mol Plant Pathol 30:273–283 [CrossRef]
    [Google Scholar]
  5. Bender C. L., Young S. A., Mitchell R. E. 1991; Conservation of plasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae. Appl Environ Microbiol 57:993–999
    [Google Scholar]
  6. Bender C., Liyanage H., Palmer D., Ullrich M., Young S., Mitchell R. E. 1993; Characterization of the genes controlling biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene 133:31–38 [CrossRef]
    [Google Scholar]
  7. Budde I. P., Ullrich M. S. 2000; Interactions of Pseudomonas syringae pv. glycinea with host and non-host plants in relation to temperature and phytotoxin synthesis. Mol Plant–Microbe Interact (in press)
    [Google Scholar]
  8. Budde I. P., Rohde B. H., Bender C. L., Ullrich M. S. 1998; Growth phase and temperature influence promoter activity, transcript abundance, and protein stability during biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 180:1360–1367
    [Google Scholar]
  9. Burrows L. L., Charter D. F., Lam J. S. 1996; Molecular characterization of the Pseudomonas aeruginosa serotype 05 (PAO1) B-band lipopolysaccharide gene cluster. Mol Microbiol 22:481–495 [CrossRef]
    [Google Scholar]
  10. Deng W. L., Preston G. M., Collmer A., Chang C. J., Huang H. C. 1998; Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. J Bacteriol 180:4523–4531
    [Google Scholar]
  11. Dunleavy J. M. 1988; Bacterial, fungal, and viral diseases affecting soybean leaves. In Soybean Diseases of the North Central Region pp. 40–46Edited by Wyllie T. D., Scott D. H. St Paul, MN: American Phytopathological Society;
    [Google Scholar]
  12. Durand J. M., Okada N., Tobe T.7 other authors 1994; vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase (Tgt) of Escherichia coli K-12. J Bacteriol 176:4627–4634
    [Google Scholar]
  13. Ertesvag H., Hoidal H. K., Hals I. K., Rian A., Doseth B., Valla S. 1995; A family of modular type mannuronan C-5-epimerase genes controls alginate structure in Azotobacter vinelandii. Mol Microbiol 16:719–731 [CrossRef]
    [Google Scholar]
  14. Fernandez-Tresguerres M. E., Martin M., Garcia D., Giraldo R., Diaz-Orejas R. 1995; Host growth temperature and a conservative amino acid substitution in the replication protein of pPS10 influence plasmid host range. J Bacteriol 177:4377–4384
    [Google Scholar]
  15. Fournier P., Paulus F., Otten L. 1993; IS870 requires a 5′-CTAG-3′ target sequence to generate the stop codon for its large ORF1. J Bacteriol 175:3151–3160
    [Google Scholar]
  16. Freiberg C. A., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X. 1997; Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401 [CrossRef]
    [Google Scholar]
  17. Fullner K. J., Nester E. W. 1996; Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178:1498–1504
    [Google Scholar]
  18. Gibbon M. J., Sesma A., Canal A., Wood J. R., Hidalgo E., Brown J., Vivian A., Murillo J. 1999; Replication regions from plant-pathogenic Pseudomonas syringae plasmids are similar to ColE2-related replicons. Microbiology 145:325–334 [CrossRef]
    [Google Scholar]
  19. Goss R. W. 1970; The relation of temperature to common halo blight of beans. Phytopathology 30:258–264
    [Google Scholar]
  20. Graham T. L., Sequeira L., Huang T. R. 1977; Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl Environ Microbiol 34:424–432
    [Google Scholar]
  21. Gutheil W. G., Holmquist B., Vallee B. L. 1992; Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry 31:475–481 [CrossRef]
    [Google Scholar]
  22. Hoshino T., Kose K. 1990; Cloning, nucleotide sequences, and identification of products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system. J Bacteriol 172:5531–5539
    [Google Scholar]
  23. Hugouvieux-Cotte-Pattat N., Dominguez H., Robert-Baudouy J. 1992; Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937. J Bacteriol 174:7807–7818
    [Google Scholar]
  24. Hurme R., Rhen M. 1998; Temperature sensing in bacterial gene regulation – what it all boils down to. . Mol Microbiol 30:1–6 [CrossRef]
    [Google Scholar]
  25. Jin S., Song Y. N., Deng W. Y., Gordon M. P., Nester E. W. 1993; The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 175:6830–6835
    [Google Scholar]
  26. Kado C. I., Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373
    [Google Scholar]
  27. Keane P. J., Kerr A., New P. B. 1970; Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23:585–595
    [Google Scholar]
  28. Khanaka H., Laine B., Sautiere P., Guillaume J. 1985; Characterization and primary structure of DNA-binding HU-type proteins from Rhizobiaceae. . Eur J Biochem 147:343–349 [CrossRef]
    [Google Scholar]
  29. Kidambi S. P., Sundin G. W., Palmer D. A., Chakrabarty A. M., Bender C. L. 1995; Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. . Appl Environ Microbiol 61:2172–2179
    [Google Scholar]
  30. Kim J. F., Ham J. H., Bauer D. W., Collmer A., Beer S. V. 1998; The hrpC and hrpN operons of Erwinia chrysanthemi EC16 are flanked by plcA and homologs of hemolysin/adhesin genes and accompanying activator/transporter genes. Mol Plant–Microbe Interact 11:563–567 [CrossRef]
    [Google Scholar]
  31. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  32. Lanham P. G., McIlravey K. I., Perombelon M. C. M. 1991; Production of the cell wall dissolving enzymes by Erwinia carotovora subsp. atroseptica in vitro at 27 °C and 30·5 °C. J Appl Bacteriol 70:20–24 [CrossRef]
    [Google Scholar]
  33. Liyanage H., Palmer D., Ullrich M., Bender C. L. 1995; Characterization and transcriptional analysis of the gene cluster for coronafacic acid, the polyketide component of the phytotoxin coronatine. Appl Environ Microbiol 61:3843–3848
    [Google Scholar]
  34. Martinez-Salvazar J. M., Moreno S., Najera R., Boucher J. C., Espin G., Soberon-Chavez G., Deretic V. 1996; Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178:1800–1808
    [Google Scholar]
  35. Mekalanos J. J. 1992; Environmental signals controlling expression of virulence determinants in bacteria. . J Bacteriol 174:1–7
    [Google Scholar]
  36. Mittal S., Davis K. R. 1995; Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant–Microbe Interact 8:165–171 [CrossRef]
    [Google Scholar]
  37. Moore R. J., Krishnapillai V. 1982; Physical and genetic analysis of deletion mutants of plasmid R91-5 and the cloning of transfer genes in Pseudomonas aeruginosa. J Bacteriol 149:284–293
    [Google Scholar]
  38. More M. I., Pohlman R. F., Winans S. C. 1996; Genes encoding the pKM101 conjugal mating pore are negatively regulated by the plasmid-encoded KorA and KorB proteins. J Bacteriol 178:4392–4399
    [Google Scholar]
  39. Newman M. A., Daniels M. J., Dow J. M. 1997; The activity of lipid A and core components of bacterial lipopolysaccharides in the prevention of the hypersensitive response in pepper. Mol Plant–Microbe Interact 10:926–928 [CrossRef]
    [Google Scholar]
  40. Palmer D. A., Bender C. L. 1993; Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea. Appl Environ Microbiol 59:1619–1623
    [Google Scholar]
  41. Peñaloza-Vázquez A., Kidambi S. P., Chakrabarty A. M., Bender C. L. 1997; Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae. J Bacteriol 179:4464–4472
    [Google Scholar]
  42. Phadnis S. H., Berg D. E. 1987; Identification of base pairs in the outside end of insertion sequence IS50 that are needed for IS50 and Tn5 transposition. . Proc Natl Acad Sci U S A 84:9118–9122 [CrossRef]
    [Google Scholar]
  43. Rowley K. B., Clements D. E., Mandel M., Humphreys T., Patil S. S. 1993; Multiple copies of a DNA sequence from Pseudomonas syringae pathovar phaseolicola abolish thermoregulation of phaseolotoxin production. . Mol Microbiol 8:625–635 [CrossRef]
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Schauer D. B., Falkow S. 1993; Attaching and effacing locus of Citrobacter freundii that causes transmissible murine colonic hyperplasia. Infect Immun 61:2486–2492
    [Google Scholar]
  46. Sequeira L. 1985; Surface components involved in bacterial pathogen–plant host recognition. J Cell Sci Suppl 2:301–316
    [Google Scholar]
  47. Shiota S., Nakayama H. 1989; Micrococcus luteus homolog of the Escherichia coli uvrA gene: identification of a mutation in the UV-sensitive mutant DB7. Mol Gen Genet 217:332–340 [CrossRef]
    [Google Scholar]
  48. Simon R., Priefer U., Pühler A. 1983; A broad host-range mobilization system for in vivo genetic engineering, transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  49. Simonson C. S., Kokjohn T. A., Miller R. V. 1990; Inducible UV repair potential of Pseudomonas aeruginosa PAO. J Gen Microbiol 136:1241–1249 [CrossRef]
    [Google Scholar]
  50. Staskawicz B. J., Dahlbeck D., Keen N. T. 1984; Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Natl Acad Sci U S A 81:6024–6028 [CrossRef]
    [Google Scholar]
  51. Sundin G. W., Kidambi S., Ullrich M., Bender C. L. 1996; Resistance to ultraviolet light in Pseudomonas syringae: sequence and functional analysis of the plasmid-encoded rulAB genes. Gene 177:77–81 [CrossRef]
    [Google Scholar]
  52. Sundstroem L., Radstroem P., Swedberg G., Skoeld O. 1988; Site-specific recombination promotes linkage between trimethoprim and sulfonamide resistance genes. Sequence characterization of the dhfrV and sulI and a recombination active locus on Tn21. Mol Gen Genet 213:191–201 [CrossRef]
    [Google Scholar]
  53. Tamura K., Zhu Y., Sato M., Teraoka T., Hosokawa D., Watanabe M. 1998; Roles of coronatine production by Pseudomonas syringae pv. maculicola for pathogenicity. Ann Phytopathol Soc Jpn 64:299–302 [CrossRef]
    [Google Scholar]
  54. Tietze E., Tschape H. 1994; Temperature-dependent expression of conjugation pili by IncM plasmid-harbouring bacteria: identification of plasmid-encoded regulatory functions. J Basic Microbiol 34:105–116 [CrossRef]
    [Google Scholar]
  55. Turner A. K., De la Cruz F., Grinsted J. 1990; Temperature sensitivity of transposition of class II transposons. J Gen Microbiol 136:65–67 [CrossRef]
    [Google Scholar]
  56. Ullrich M., Bender C. L. 1994; The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. . J Bacteriol 156:7574–7586
    [Google Scholar]
  57. Ullrich M., Guenzi A. C., Mitchell R. E., Bender C. L. 1994; Cloning and expression of genes required for coronamic acid (2-ethyl-1-aminocyclopropane 1-carboxylic acid), an intermediate in the biosynthesis of the phytotoxin coronatine. Appl Environ Microbiol 60:2890–2897
    [Google Scholar]
  58. Ullrich M., Peñaloza-Vázquez A., Bailey A. M., Bender C. L. 1995; A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 157:6160–6169
    [Google Scholar]
  59. Van Dijk K., Fouts D. E., Rehm A. H., Hill R. A., Collmer A., Alfano J. R. 1999; The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature- and pH-sensitive manner. . J Bacteriol 181:4790–4797
    [Google Scholar]
  60. Van den Eede G., Deblaere R., Goethals K., Montagu V. M., Holster M. 1992; Broad host range and promoter selection vectors for bacteria that interact with plants. . Mol Plant–Microbe Interact 5:228–234 [CrossRef]
    [Google Scholar]
  61. Wei Z. M., Sneath B. J., Beer S. V. 1992; Expression of Erwinia amylovora hrp genes in response to environmental stimuli. . J Bacteriol 174:1875–1882
    [Google Scholar]
  62. Wharam S. D., Mulholland V., Salmond G. P. C. 1995; Conserved virulence factor regulation and secretion systems in bacterial pathogens of plants and animals. Eur J Plant Pathol 101:1–13 [CrossRef]
    [Google Scholar]
  63. Whitby P. W., Landon M., Coleman G. 1992; The cloning and nucleotide sequence of the serine protease gene (aspA) of Aeromonas salmonicida ssp. salmonicida. FEMS Microbiol Lett 99:65–72 [CrossRef]
    [Google Scholar]
  64. Wilson K. J., Hughes S. G., Jefferson R. A. 1992; The Escherichia coli gus operon, induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In GUS Protocols, Using the GUS Gene as a Reporter of Gene Expression pp. 7–23Edited by Gallagher S. New York: Academic Press;
    [Google Scholar]
  65. Wilson K. J., Sessitsch A., Corbo J. C., Giller K. E., Akkermans A. D. L., Jefferson R. A. 1995; β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 141:1691–1705 [CrossRef]
    [Google Scholar]
  66. Winans S. C., Walker G. C. 1985; Identification of pKM101-encoded loci specifying potentially lethal gene products. J Bacteriol 161:417–424
    [Google Scholar]
  67. Xiao Y., Lu Y., Heu S., Hutcheson S. W. 1992; Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J Bacteriol 154:1534–1541
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2457
Loading
/content/journal/micro/10.1099/00221287-146-10-2457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error