1887

Abstract

A total of 107 isolates of , including 29 strains belonging to serogroup O139, were studied using multilocus enzyme electrophoresis (MLEE) to determine allelic variation in 15 housekeeping enzyme loci. All loci were polymorphic and 99 electrophoretic types (ETs) were identified from the total sample. No significant clustering of isolates was detected in the dendrogram generated from a matrix of coefficients of distances with respect to serogroup, biotype or country of isolation. The mean genetic diversity of this population (=050) was higher than reported previously. Linkage disequilibrium analysis of the MLEE data showed a clonal structure for the entire population, but not in some of the population subgroups studied. This suggests an epidemic population structure. The results showed that the O139 strains were not clustered in a unique ET, in contrast to previous MLEE studies. This higher genetic variation of the O139 serogroup is concordant with ribotyping studies. The results also confirm that the O139 and O1 ElTor isolates are genetically more closely related to each other than to all the other subpopulations of studied.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2613
2000-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462613a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2613&mimeType=html&fmt=ahah

References

  1. Albert M. J., Siddique A. K., Islam M. S., Faruque A. S. G., Ansaruzzaman M., Faruque S. M., Sack R. B. 1993; Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. . Lancet 341:704
    [Google Scholar]
  2. Baumann P., Furniss A. L., Lee J. V. 1984; Genus I. Vibrio. In Bergey’s Manual of Systematic Bacteriology pp. 518–538Edited by Kreig N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Beltrán P., Delgado G., Navarro A., Trujillo F., Selander R. K., Cravioto A. 1999; Genetic diversity and population structure of Vibrio cholerae. J Clin Microbiol 37:581–590
    [Google Scholar]
  4. Bik E. M., Bunschoten A. E., Gouw R. D., Mooi F. R. 1995; Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14:209–216
    [Google Scholar]
  5. Bik E. M., Gouw R. D., Mooi F. R. 1996; DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J Clin Microbiol 34:1453–1461
    [Google Scholar]
  6. Blake P. A. 1994; Historical perspectives on pandemic cholera. In Vibrio cholerae and Cholera: Molecular to Global Perspectives pp. 293–295Edited by Wachsmuth I. K., Blake P. A., Olsvik O. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Brown A. D., Feldman M. W., Nevo E. 1980; Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96:523–536
    [Google Scholar]
  8. Byun R., Elbourne L. D., Lan R., Reeves P. R. 1999; Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun 67:1116–1124
    [Google Scholar]
  9. Chen F., Evins G. M., Cook W. L., Almeida R., Hargrett-Bean N., Wachsmuth K. 1991; Genetic diversity among toxigenic and nontoxigenic Vibrio cholerae O1 isolated from the Western Hemisphere. Epidemiol Infect 107:225–233 [CrossRef]
    [Google Scholar]
  10. Colwell R. R. 1996; Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031 [CrossRef]
    [Google Scholar]
  11. Colwell R. R., Huq A. 1994; Vibrios in the environment: viable but nonculturable Vibrio cholerae. In Vibrio cholerae and Cholera: Molecular to Global Perspectives pp. 117–133Edited by Wachsmuth I. K., Blake P. A., Olsvik O. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Epstein P. R., Ford T. E., Colwell R. R. 1993; Marine ecosystems. . Lancet 342:1216–1219 [CrossRef]
    [Google Scholar]
  13. Evins G. M., Cameron D. N., Wells J. G., Greene K. D., Popovic T., Giono-Cerezo S., Wachsmuth I. K., Tauxe R. V. 1995; The emerging diversity of the electrophoretic types of Vibrio cholerae in the Western Hemisphere. J Infect Dis 172:173–179 [CrossRef]
    [Google Scholar]
  14. Faruque S. M., Ahmed K. M., Abdul Alim A. R. M., Qadri F., Siddique A. K., Albert M. J. 1997a; Emergence of a new clone of toxigenic Vibrio cholerae O1 biotype ElTor displacing V. cholerae O139 Bengal in Bangladesh. J Clin Microbiol 35:624–630
    [Google Scholar]
  15. Faruque S. M., Ahmed K. M., Siddique A. K., Zaman K., Abdul Alim A. R. M., Albert M. J. 1997b; Molecular analysis of toxigenic Vibrio cholerae O139 Bengal strains isolated in Bangladesh between 1993 and 1996: evidence for emergence of a new clone of the Bengal vibrios. J Clin Microbiol 35:2299–2306
    [Google Scholar]
  16. Faruque S. M., Albert M. J., Mekalanos J. J. 1998; Epidemiology, genetics and ecology of toxigenic Vibrio cholerae. . Microbiol Mol Biol Rev 62:1301–1314
    [Google Scholar]
  17. Felsenstein J. 1993 phylip package, version 3·5 Seattle, WA: University of Washington; http://evolution.genetics.washington.edu/phylip.html
    [Google Scholar]
  18. Fusté M. C., Pineda M. A., Palomar J., Viñas M., Lorén J. G. 1996; Clonality of multidrug-resistant nontypeable strains of Haemophilus influenzae. J Clin Microbiol 34:2760–2765
    [Google Scholar]
  19. Gibson D. T. 1971; Assay of enzymes of aromatic metabolism. Methods Microbiol 6A:463–478
    [Google Scholar]
  20. Harvell C. D., Kim K., Burkholder J. M.10 other authors 1999; Emerging marine diseases – climate links and anthropogenic factors (review). Science 285:1505–1510 [CrossRef]
    [Google Scholar]
  21. Jiang S. C., Matte M., Matte G., Huq A., Colwell R. R. 2000; Genetic diversity of clinical and environmental isolates of Vibrio cholerae determined by amplified fragment length polymorphism fingerprinting. . Appl Environ Microbiol 66:148–153 [CrossRef]
    [Google Scholar]
  22. Kaper J. B., Bradford H. B., Roberts N. C., Falkow S. 1982; Molecular epidemiology of Vibrio cholerae in the U. S. Gulf Coast. J Clin Microbiol 16:129–134
    [Google Scholar]
  23. Kaper J. B., Morris J. G., Levine M. M. 1995; Cholera. . Clin Microbiol Rev 8:48–86
    [Google Scholar]
  24. Karaolis D. K., Lan R., Reeves P. R. 1994; Molecular evolution of the seventh-pandemic clone of Vibrio cholerae and its relationship to other pandemic and epidemic V. cholerae isolates. J Bacteriol 176:6199–6206
    [Google Scholar]
  25. Karaolis D. K., Lan R., Reeves P. R. 1995; The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. . J Bacteriol 177:3191–3198
    [Google Scholar]
  26. Karaolis D. K., Johnson J. A., Bailey C. C., Boedeker E. C., Kaper J. B., Reeves P. R. 1998; A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA 95:3134–3139 [CrossRef]
    [Google Scholar]
  27. Kataeva I. A., Golovleva L. A. 1990; Catechol 2,3-dioxygenases from Pseudomonas aeruginosa 2x. Methods Enzymol 188:115–121
    [Google Scholar]
  28. Maynard Smith J., Smith N. H., O’Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Acad Sci USA 90:4384–4388 [CrossRef]
    [Google Scholar]
  29. Mukhopadhyay A. K., Basu A., Garg P., Bag P. K., Ghosh A., Bhattacharya S. K., Takeda Y., Nair G. B. 1998; Molecular epidemiology of reemergent Vibrio cholerae O139 Bengal in India. . J Clin Microbiol 36:2149–2152
    [Google Scholar]
  30. Nei M. 1972; Genetic distance between populations. . Am Nat 106:283–292 [CrossRef]
    [Google Scholar]
  31. Nei M. 1978; Estimation of average heterozygosity and genetic distance from a small sample of individuals. . Genetics 89:583–590
    [Google Scholar]
  32. Popovic T., Fields P. I., Olsvik O.11 other authors 1995; Molecular subtyping of toxigenic Vibrio cholerae O139 causing epidemic cholera in India and Bangladesh, 1992–1993. J Infect Dis 171:122–127 [CrossRef]
    [Google Scholar]
  33. Ramamurthy T., Garg S., Sharma R.8 other authors 1993; Emergence of a novel strain of Vibrio cholerae with epidemic potential in Southern and Eastern India. Lancet 341:703–704
    [Google Scholar]
  34. Ravel J., Knight I. T., Monahan C. E., Hill R. T., Colwell R. R. 1995; Temperature-induced recovery of Vibrio cholerae from the viable but nonculturable state: growth or resuscitation?. Microbiology 141:377–383 [CrossRef]
    [Google Scholar]
  35. Rivera I. G., Chowdhury M. A. R., Huq A., Jacobs D., Martins M. T., Colwell R. R. 1995; Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139 and non-O1 strains. Appl Environ Microbiol 61:2898–2904
    [Google Scholar]
  36. Rohlf F. J. 1993 Numerical taxonomy and multivariate analysis system, version 1·80 New York: Exeter Software;
    [Google Scholar]
  37. Salles C. A., Momen H. 1991; Identification of Vibrio cholerae by enzyme electrophoresis. Trans R Soc Trop Med Hyg 85:544–547 [CrossRef]
    [Google Scholar]
  38. Sanchez J. L., Taylor D. N. 1997; Cholera. . Lancet 349:1825–1830 [CrossRef]
    [Google Scholar]
  39. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  40. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy San Francisco: Freeman;
    [Google Scholar]
  41. Stroeher U. H., Parasivam G., Dredge B. K., Manning P. A. 1997; Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. . J Bacteriol 179:2740–2747
    [Google Scholar]
  42. Wachsmuth I. K., Evins G. M., Fields P. I., Olsvik O., Popovic T., Bopp C. A., Wells J. G., Carrillo C., Blake P. A. 1993; The molecular epidemiology of cholera in Latin America. J Infect Dis 167:621–626 [CrossRef]
    [Google Scholar]
  43. Waldor M. K., Mekalanos J. J. 1996; Lysogenic conversion by a filamentous phage encoding cholera toxin. . Science 272:1910–1914 [CrossRef]
    [Google Scholar]
  44. Whittam T. S. 1995; Genetic population structure and pathogenicity in enteric bacteria. In Population Genetics of Bacteria pp. 217–245Edited by Baumberg S., Young J. P., Wellington E. M. H., Saunders J. R. Cambridge: Cambridge University Press;
    [Google Scholar]
  45. Young J. P. W. 1989; The population genetics of bacteria. In Genetics of Bacterial DiversityEdited by Hopwood D. A., Chater K. F. London: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2613
Loading
/content/journal/micro/10.1099/00221287-146-10-2613
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error