1887

Abstract

In , the co-ordinated regulation of different systems required for pathogenicity and virulence seems logical but has not been established. This question was addressed in the present study by analysing production of the phytotoxin coronatine (COR) in defined / mutants of pv. DC3000. COR was produced by mutants of DC3000 defective in , which encodes an outer-membrane protein required for type III-mediated secretion. When inoculated in plants, mutants produced chlorotic regions indicative of COR production, but lacked the necrotic lesions produced by the wild-type DC3000. Furthermore, a DC3000 mutant containing a polar mutation in , which inactivates , and , produced significantly higher amounts of COR than the wild-type strain . This mutant was able to produce COR earlier and at lower cell densities than the wild-type. The results indicate that the / secretion system is not required for COR production, but mutations in this system may have regulatory effects on the production of virulence factors such as COR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2447
2000-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462447a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2447&mimeType=html&fmt=ahah

References

  1. Alfano J. R., Charkowski A. O., Deng W.-L., Badel J. L., Petnick-Ocwieja T., van Dijk K., Collmer A. 2000; The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97:4856–4861 [CrossRef]
    [Google Scholar]
  2. Bender C. L., Stone H. E., Sims J. J., Cooksey D. A. 1987; Reduced pathogen fitness of Pseudomonas syringae pv. tomato Tn5 mutants defective in coronatine production. Physiol Mol Plant Pathol 30:272–283
    [Google Scholar]
  3. Bender C. L., Malvick D. K., Mitchell R. E. 1989; Plasmid-mediated production of the phytotoxin coronatine in Pseudomonas syringae pv. tomato. J Bacteriol 171:807–812
    [Google Scholar]
  4. Bender C. L., Young S. A., Mitchell R. E. 1991; Conservation of plasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae. Appl Environ Microbiol 57:993–999
    [Google Scholar]
  5. Bender C. L., Young S. A., Mitchell R. E. 1992; Ecological and genetic studies of coronatine synthesis in Pseudomonas syringae. In Pseudomonas: Molecular Biology and Biotechnology pp. 56–63Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Bender C. L., Alarcón-Chaidez F., Gross D. C. 1999; Pseudomonas syringae phytotoxins: mode of action, regulation and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292
    [Google Scholar]
  7. Bogdanove A. J., Beer S. V., Bonas U.8 other authors 1996; Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol Microbiol 20:681–683 [CrossRef]
    [Google Scholar]
  8. Charkowski A. O., Huang H.-C., Collmer A. 1997; Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests that different components of the Type III secretion pathway control protein translocation across the inner and outer membranes of Gram-negative bacteria. J Bacteriol 179:3866–3874
    [Google Scholar]
  9. Deng W. L., Preston G., Collmer A., Chang C.-J., Huang H.-C. 1998; Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato and glycinea and analysis of the ability of hrpF, hrpG, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. J Bacteriol 180:4523–4531
    [Google Scholar]
  10. Galán J. E., Collmer A. 1999; Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328 [CrossRef]
    [Google Scholar]
  11. Grimm C., Aufsatz W., Panopoulos N. J. 1995; The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit. Mol Microbiol 15:155–165 [CrossRef]
    [Google Scholar]
  12. He S. Y. 1998; Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 36:363–392 [CrossRef]
    [Google Scholar]
  13. Hendrickson E. L., Guevera P., Ausubel F. M. 2000a; The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pathovar maculicola and acts at the level of hrpL transcription. J Bacteriol 182:3508–3516 [CrossRef]
    [Google Scholar]
  14. Hendrickson E. L, Guevera P., Shao J., Peñaloza-Vázquez A., Bender C., Ausubel F. M. 2000b; Virulence of the phytopathogen Pseudomonas syringae pathovar maculicola is rpoN dependent. J Bacteriol 182:3498–3507 [CrossRef]
    [Google Scholar]
  15. Hirano S. S., Charkowski A. O., Collmer A., Willis D. K., Upper C. D. 1999; Role of the Hrp type III protein secretion system in growth of Pseudomonas syringae pv. syringae B728a on host plants in the field. Proc Natl Acad Sci U S A 96:9851–9856 [CrossRef]
    [Google Scholar]
  16. Hrabak E. M., Willis D. K. 1992; The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol 174:3011–3020
    [Google Scholar]
  17. Hutcheson S. W. 1999; The hrp cluster of Pseudomonas syringae: a pathogenicity island encoding a type III protein translocation complex?. In Pathogenicity Islands and Other Mobile Virulence Elements pp. 309–329Edited by Kaper J. B., Hacker J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Hutcheson S. W., Heu S., Jin S., Lidell M. C., Pirhonen M. U., Rowley D. L. 1996; Function and regulation of Pseudomonas hrp genes. In Molecular Biology of Pseudomonads pp. 512–521Edited by Nakazawa T., Furukawa K., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Keane P. J., Kerr A., New P. B. 1970; Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23:585–595
    [Google Scholar]
  20. Kenyon J. S., Turner J. G. 1992; The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine. Plant Physiol 100:219–224 [CrossRef]
    [Google Scholar]
  21. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  22. Kitten T., Kinscherf T. G., McEvoy J. L., Willis D. K. 1998; A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Microbiol 28:917–929 [CrossRef]
    [Google Scholar]
  23. Liyanage H., Penfold C., Turner J., Bender C. L. 1995; Sequence, expression and transcriptional analysis of the coronafacate ligase-encoding gene required for coronatine biosynthesis by Pseudomonas syringae. . Gene 153:17–23 [CrossRef]
    [Google Scholar]
  24. Ma S.-W., Morris V. L., Cuppels D. A. 1991; Characterization of a DNA region required for production of the phytotoxin coronatine by Pseudomonas syringae pv. tomato. Mol Plant–Microbe Interact 4:69–74 [CrossRef]
    [Google Scholar]
  25. Mitchell R. E. 1985; Coronatine biosynthesis: incorporation of l-[U-14C]isoleucine and l-[U-14C]threonine into the 1-amido-1-carboxy-2-ethylcyclopropyl moiety. Phytochemistry 24:247–249 [CrossRef]
    [Google Scholar]
  26. Mitchell R. E., Hale C. N., Shanks J. C. 1983; Production of different pathogenic symptoms and different toxins by strains of Pseudomonas syringae pv. tomato not distinguishable by gel-immunodiffusion assay. Physiol Plant Pathol 23:315–322 [CrossRef]
    [Google Scholar]
  27. Mittal S. M., Davis K. R. 1995; Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant–Microbe Interact 8:165–171 [CrossRef]
    [Google Scholar]
  28. Moore R. A., Starratt A. N., Ma S.-W., Morris V. L., Cuppels D. A. 1989; Identification of a chromosomal region required for biosynthesis of the phytotoxin coronatine by Pseudomonas syringae pv. tomato. Can J Microbiol 35:910–917 [CrossRef]
    [Google Scholar]
  29. Morett E., Segovia E. 1993; The σ54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175:6067–6074
    [Google Scholar]
  30. North A. K., Klose K. E., Stedman K. M., Kustu S. 1993; Prokaryotic enhancer-binding proteins reflect eukaryote-like modularity: the puzzle of nitrogen regulatory protein C. J Bacteriol 175:4267–4273
    [Google Scholar]
  31. Palmer D. A., Bender C. L. 1993; Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea. Appl Environ Microbiol 59:1619–1626
    [Google Scholar]
  32. Palmer D. A., Bender C. L., Sharma S. 1997; Use of Tn5-gusA5 to investigate environmental and nutritional effects on gene expression in the coronatine biosynthetic gene cluster of Pseudomonas syringae pv. glycinea. Can J Microbiol 43:517–525 [CrossRef]
    [Google Scholar]
  33. Parry R. J., Mhaskar S. V., Lin M.-T., Walker A. E., Mafoti R. 1994; Investigations of the biosynthesis of the phytotoxin coronatine. Can J Chem 72:86–99 [CrossRef]
    [Google Scholar]
  34. Peñaloza-Vázquez A., Bender C. L. 1998; Characterization of CorR, a transcriptional activator which is required for biosynthesis of the phytotoxin coronatine. J Bacteriol 180:6252–6259
    [Google Scholar]
  35. Preston G. 1997 HrpZ and hrp expression in Pseudomonas syringae and emerging paradigms of pathogenesis and host specificity PhD thesis Cornell University; USA:
    [Google Scholar]
  36. Preston G., Deng W.-L., Huang H.-C., Collmer A. 1998; Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J Bacteriol 180:4532–4537
    [Google Scholar]
  37. Rangaswamy V., Mitchell R., Ullrich M., Bender C. 1998; Analysis of genes involved in the biosynthesis of coronafacic acid, the polyketide component of the phytotoxin coronatine. J Bacteriol 180:3330–3338
    [Google Scholar]
  38. Rich J. J., Kinscherf T. G., Kitten T., Willis D. K. 1994; Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol 176:7468–7475
    [Google Scholar]
  39. Rohde B. H., Pohlack B., Ullrich M. S. 1998; Occurrence of thermoregulation of genes involved in coronatine biosynthesis among various Pseudomonas syringae strains. J Basic Microbiol 38:41–50 [CrossRef]
    [Google Scholar]
  40. Roine E., Wei W., Yuan J., Nurmiaho-Lassila E. L., Kalkkinen N., Romantschuk M., He S. Y. 1997; Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 94:3459–3464 [CrossRef]
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Schaad N. W. 1988 Laboratory Guide for Identification of Plant Pathogenic Bacteria St Paul, MI: American Phytopathological Society Press;
    [Google Scholar]
  43. Ullrich M., Bender C. L. 1994; The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid activating enzymes and thioesterases. J Bacteriol 176:7574–7586
    [Google Scholar]
  44. Ullrich M., Peñaloza-Vázquez A., Bailey A. M., Bender C. L. 1995; A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 177:6160–6169
    [Google Scholar]
  45. Wang L., Bender C. L., Ullrich M. S. 1999; The transcriptional activator CorR is involved in biosynthesis of the phytotoxin coronatine and binds to the cmaABT promoter region in a temperature-dependent manner. Mol Gen Genet 262:250–260 [CrossRef]
    [Google Scholar]
  46. Wei W., Plovanich-Jones A., Deng W.-L., Jin Q.-L., Collmer A., Huang H.-C., He S. Y. 2000; The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. . Proc Natl Acad Sci USA 97:2247–2252 [CrossRef]
    [Google Scholar]
  47. Xiao Y., Heu S., Yi J., Lu Y., Hutcheson S. W. 1994; Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol 176:1025–1036
    [Google Scholar]
  48. Yu J., Peñaloza-Vázquez A., Chakrabarty A. M., Bender C. L. 1999; Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720 [CrossRef]
    [Google Scholar]
  49. Yuan J., He S. Y. 1996; The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J Bacteriol 178:6399–6402
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2447
Loading
/content/journal/micro/10.1099/00221287-146-10-2447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error