1887

Abstract

is an opportunistic human pathogen which poses a major threat to patients with cystic fibrosis (CF). Excessive amounts of mucus present in the lungs of CF patients promotes the colonization of . The gene, encoding a putative glycosyltransferase, has been shown to be highly inducible by respiratory mucus derived from CF patients. In this study, it is further demonstrated by population transcript analysis that the gene is highly expressed in the CF lung environment. Deletion analysis of the promoter identified a -box-like sequence commonly found in promoters that are responsive to quorum sensing regulation. Further analysis of expression in quorum-sensing-defective strains, as well as its expression in response to autoinducer molecules, demonstrated that is regulated by the RhlI/RhlR quorum sensing regulatory system. Functionally, as the MigA sequence homology data suggested, the gene indeed affects the structure of LPS in . Increased expression of the gene results in a loss of core-plus-one LPS, while having no obvious effect on the long-chain O-antigen-bearing LPS. Although the exact biological role of the core-plus-one LPS is not clear, these experimental results suggest that up-regulation in the CF lung environment is part of the adaptive response which confers on a survival advantage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2509
2000-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462509a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2509&mimeType=html&fmt=ahah

References

  1. Belanger M., Burrows L. L., Lam J. S. 1999; Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology 145:3505–3521
    [Google Scholar]
  2. Bodey G. P., Bolivar R., Fainstein V., Jadeja L. 1983; Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5:279–313 [CrossRef]
    [Google Scholar]
  3. Brint J. M., Ohman D. E. 1995; Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177:7155–7163
    [Google Scholar]
  4. Carnoy C., Ramphal R., Scharfman A., Lo G. J. M., Houdret N., Klein A., Galabert C., Lamblin G., Roussel P. 1993; Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol 9:323–334 [CrossRef]
    [Google Scholar]
  5. Chitinis C. E., Ohman D. E. 1990; Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. J Bacteriol 172:2894–2900
    [Google Scholar]
  6. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring vitamin B12. J Bacteriol 60:17–28
    [Google Scholar]
  7. Deretic V., Schurr M. J., Yu H. 1995; Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 3:351–356 [CrossRef]
    [Google Scholar]
  8. Dubray G., Bezard G. 1982; A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem 119:325–329 [CrossRef]
    [Google Scholar]
  9. Emara M. G., Tout N. L., Kaushik A., Lam J. S. 1995; Diverse VH and V kappa genes encode antibodies to Pseudomonas aeruginosa LPS. J Immunol 155:3912–3921
    [Google Scholar]
  10. Ernst R. K., Yi E. C., Guo L., Lim K. B., Burns J. L., Hackett M., Miller S. I. 1999; Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286:1561–1565 [CrossRef]
    [Google Scholar]
  11. Fuqua C., Greenberg E. P. 1998; Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol 1:183–189 [CrossRef]
    [Google Scholar]
  12. Gilligan P. H. 1991; Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4:35–51
    [Google Scholar]
  13. Govan J. R. W. 1988; Alginate biosynthesis and unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis. In Bacterial Infections of Respiratory and Gastrointestinal Mucosae pp. 67–96Edited by Griffiths E., Donachie W., Stephen J. Oxford: IRL Press;
    [Google Scholar]
  14. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574
    [Google Scholar]
  15. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  16. Hancock R. E. W., Carey A. M. 1979; Outer membrane of Pseudomonas aeruginosa: heat- and 2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902–910
    [Google Scholar]
  17. Hancock R. E. W., Mutharia L. M., Chan L., Darveau R. P., Speert D. P., Pier G. B. 1983; Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42:170–177
    [Google Scholar]
  18. Heinrichs D. E., Yethon J. A., Amor P. A., Whitfield C. 1998; The assembly system for the outer core portion of R1- and R4-type lipopolysaccharides of Escherichia coli. The R1 core-specific beta-glucosyltransferase provides a novel attachment site for O-polysaccharides. J Biol Chem 273:29497–29505 [CrossRef]
    [Google Scholar]
  19. Hitchcock P. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269–277
    [Google Scholar]
  20. Holder I. A. 1993; Pseudomonas aeruginosa virulence-associated factors and their role in burn wound infections. In Pseudomonas aeruginosa, the Opportunist pp. 235–245Edited by Fick R. B. Jr. Boca Raton, FL: CRC Press;
    [Google Scholar]
  21. Holloway B. W., Krishnapillai V., Morgan A. F. 1979; Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102
    [Google Scholar]
  22. Jin S., Ishimoto K., Lory S. 1994; Nucleotide sequence of the rpoN gene and characterization of two downstream open reading frames in Pseudomonas aeruginosa. J Bacteriol 176:1316–1322
    [Google Scholar]
  23. de Kievit T. R., Lam J. S. 1994; Monoclonal antibodies that distinguish inner core, outer core, and lipid A regions of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 176:7129–7139
    [Google Scholar]
  24. Kunkel T. A., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site-specific mutagenesis without phenotypic selection. Method Enzymol 154:367–382
    [Google Scholar]
  25. Lam M. Y., McGroarty E. J., Kropinski A. M., MacDonald L. A., Pedersen S. S., Hoiby N., Lam J. S. 1989; Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J Clin Microbiol 27:962–967
    [Google Scholar]
  26. Latifi A., Winson M. K., Foglino M., Bycroft B. W., Stewart G. S., Lazdunski A., Williams P. 1995; Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:3333–3343
    [Google Scholar]
  27. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146 [CrossRef]
    [Google Scholar]
  28. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126:109–117 [CrossRef]
    [Google Scholar]
  29. Luzar M. A., Montie T. C. 1985; Avirulence and altered physiological properties of cystic fibrosis strains of Pseudomonas aeruginosa. Infect Immun 50:572–576
    [Google Scholar]
  30. Ma S., Selvaraj U., Ohman D. E., Quarless R., Hassett D. J., Wozniak D. J. 1998; Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol 180:956–968
    [Google Scholar]
  31. Mahenthiralingam E., Campbell M. E., Speert D. P. 1994; Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605
    [Google Scholar]
  32. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Marshall B. C., Carroll K. C. 1991; Interaction between Pseudomonas aeruginosa and host defenses in cystic fibrosis. Semin Respir Infect 6:11–18
    [Google Scholar]
  34. Nunn D., Bergman S., Lory S. 1990; Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J Bacteriol 172:2911–2919
    [Google Scholar]
  35. Ochsner U. A., Reiser J. 1995; Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428 [CrossRef]
    [Google Scholar]
  36. Ochsner U. A., Koch A. K., Fiechter A., Reiser J. 1994; Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054
    [Google Scholar]
  37. Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H. 1993; Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130 [CrossRef]
    [Google Scholar]
  38. Pearson J. P., Gray K. M., Passador L., Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P. 1994; Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91:197–201 [CrossRef]
    [Google Scholar]
  39. Pearson J. P., Passador L., Iglewski B. H., Greenberg E. P. 1995; A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:1490–1494 [CrossRef]
    [Google Scholar]
  40. Pearson J. P., Pesci E. C., Iglewski B. H. 1997; Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767
    [Google Scholar]
  41. Pesci E. C., Iglewski B. H. 1997; The chain of command in Pseudomonas quorum sensing. Trends Microbiol 5:132–135 [CrossRef]
    [Google Scholar]
  42. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132
    [Google Scholar]
  43. Potts S. B., Roggli V. L., Spock A. 1995; Immunohistologic quantification of Pseudomonas aeruginosa in the tracheobronchial tree from patients with cystic fibrosis. Pediatr Pathol Lab Med 15:707–721 [CrossRef]
    [Google Scholar]
  44. Rahim R., Burrows L. L., Monteiro M. A., Perry M. B., Lam J. S. 2000; Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146: (in press)
    [Google Scholar]
  45. Rocchetta H. L., Burrows L. L., Lam J. S. 1999; Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63:523–553
    [Google Scholar]
  46. Sadovskaya I., Brisson J. R., Thibault P., Richards J. C., Lam J. S., Altman E. 2000; Structural characterization of the outer core and the O-chain linkage region of lipopolysaccharide from Pseudomonas aeruginosa serotype O5. Eur J Biochem 267:1640–1650 [CrossRef]
    [Google Scholar]
  47. Schad P. A., Iglewski B. H. 1988; Nucleotide sequence and expression in Escherichia coli of the Pseudomonas aeruginosa lasA gene. J Bacteriol 170:2784–2789
    [Google Scholar]
  48. Seed P. C., Passador L., Iglewski B. H. 1995; Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177:654–659
    [Google Scholar]
  49. Storey D. G., Ujack E. E., Rabin H. R. 1992; Population transcript accumulation of Pseudomonas aeruginosa exotoxin A and elastase in sputa from patients with cystic fibrosis. Infect Immun 60:4687–4694
    [Google Scholar]
  50. Storey D. G., Ujack E. E., Mitchell I., Rabin H. R. 1997; Positive correlation of algD transcription to lasB and lasA transcription by populations of Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis. Infect Immun 65:4061–4067
    [Google Scholar]
  51. Storey D. G., Ujack E. E., Rabin H. R., Mitchell I. 1998; Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 66:2521–2528
    [Google Scholar]
  52. Toder D. S., Gambello M. J., Iglewski B. H. 1991; Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR. Mol Microbiol 5:2003–2010 [CrossRef]
    [Google Scholar]
  53. Toder D. S., Ferrell S. J., Nezezon J. L., Rust L., Iglewski B. H. 1994; lasA and lasB genes of Pseudomonas aeruginosa: analysis of transcription and gene product activity. Infect Immun 62:1320–1327
    [Google Scholar]
  54. Totten P. A., Lory S. 1990; Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. J Bacteriol 172:7188–7199
    [Google Scholar]
  55. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [CrossRef]
    [Google Scholar]
  56. Wang J., Lory S., Ramphal R., Jin S. 1996; Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol Microbiol 22:1005–1012 [CrossRef]
    [Google Scholar]
  57. Whiteley M., Lee K. M., Greenberg E. P. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:13904–13909 [CrossRef]
    [Google Scholar]
  58. Winson M. K., Camara M., Latifi A.8 other authors 1995; Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:9427–9431 [CrossRef]
    [Google Scholar]
  59. Woods D. E., Schaffer M. S., Rabin H. P., Campbell G. D., Sokol P. A. 1986; Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J Clin Microbiol 24:260–264
    [Google Scholar]
  60. Wozniak D. J., Ohman D. E. 1994; Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol 176:6007–6014
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2509
Loading
/content/journal/micro/10.1099/00221287-146-10-2509
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error