1887

Abstract

CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that substantially contributes to this strain’s biocontrol ability. Cyanogenesis is induced by oxygen-limiting conditions, but abolished by iron depletion. In , the anaerobic regulator ANR and the global activator GacA are both required for the maximal expression of the HCN biosynthetic genes . The molecular basis of this regulation by ANR and GacA was investigated under conditions of oxygen and iron limitation. A promoter deletion analysis using a translational ′–′ fusion revealed that a conserved FNR/ANR recognition sequence in the −40 promoter region was necessary and sufficient for the regulation by ANR in response to oxygen limitation. Stimulation of ′–′ expression by the addition of iron also depended on the presence of ANR and the FNR/ANR box, but not on GacA, suggesting that in addition to acting as an oxygen-sensitive protein, ANR also responds to iron availability. Expression of the translational ′–′ fusion remained GacA-dependent in promoter mutants that were no longer responsive to ANR, in agreement with earlier evidence for a post-transcriptional regulatory mechanism under GacA control. These data support a model in which cyanogenesis is sequentially activated by ANR at the level of transcription and by components of the GacA network at the level of translation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2417
2000-10-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462417a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2417&mimeType=html&fmt=ahah

References

  1. Addess K. J., Basilion J. P., Klausner R. D., Rouault T. A., Pardi A.. 1997; Structure and dynamics of the iron responsive element RNA: implications for binding of the RNA by iron regulatory binding proteins. J Mol Biol274:72–83[CrossRef]
    [Google Scholar]
  2. Askeland R. A., Morrison S. M.. 1983; Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol45:1802–1807
    [Google Scholar]
  3. Barton H. A., Johnson Z., Cox C. D., Vasil A. I., Vasil M. L.. 1996; Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments. Mol Microbiol21:1001–1017[CrossRef]
    [Google Scholar]
  4. Blumer C., Haas D.. 2000; Multicopy suppression of a gacA mutation by the infC operon in Pseudomonas fluorescens CHA0: competition with the global translational regulator RsmA. FEMS Microbiol Lett187:53–58[CrossRef]
    [Google Scholar]
  5. Blumer C., Heeb S., Pessi G., Haas D.. 1999; Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA96:14073–14078[CrossRef]
    [Google Scholar]
  6. Castric P. A.. 1975; Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. . Can J Microbiol21:613–618[CrossRef]
    [Google Scholar]
  7. Castric P. A.. 1977; Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. J Bacteriol130:826–831
    [Google Scholar]
  8. Castric P. A.. 1981; The metabolism of hydrogen cyanide by bacteria. In Cyanide in Biology pp.233–261Edited by Vennesland B., Conn E. E., Knowles C. J., Westley J., Wissing F.. London: Academic Press;
    [Google Scholar]
  9. Castric P. A.. 1983; Hydrogen cyanide production by Pseudomonas aeruginosa at reduced oxygen levels. . Can J Microbiol29:1344–1349[CrossRef]
    [Google Scholar]
  10. Castric P. A.. 1994; Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Curr Microbiol29:19–21[CrossRef]
    [Google Scholar]
  11. Castric P. A., Ebert R. F., Castric K. F.. 1979; The relationship between growth phase and cyanogenesis in Pseudomonas aeruginosa. Curr Microbiol2:287–292[CrossRef]
    [Google Scholar]
  12. Chancey S. T., Wood D. W., Pierson L. S.. 1999; Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol65:2294–2299
    [Google Scholar]
  13. Cotter P. A., Darie S., Gunsalus R. P.. 1992; The effect of iron limitation on expression of the aerobic and anaerobic electron transport pathway genes in Escherichia coli. FEMS Microbiol Lett79:227–232
    [Google Scholar]
  14. Crosa J. H.. 1997; Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev61:319–336
    [Google Scholar]
  15. Del Sal G., Manfioletti G., Schneider C.. 1988; A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res16:9878[CrossRef]
    [Google Scholar]
  16. Eriksson A. R., Andersson R. A., Pirhonen M., Palva E. T.. 1998; Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol Plant–Microbe Interact11:743–752[CrossRef]
    [Google Scholar]
  17. Farinha M. A., Kropinski A. M.. 1990; High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol Lett58:221–225
    [Google Scholar]
  18. Gaffney T. D., Lam S. T., Ligon J..9 other authors 1994; Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant–Microbe Interact7:455–463[CrossRef]
    [Google Scholar]
  19. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O’Gara F., Haas D.. 2000; Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. Mol Plant–Microbe Interact13:232–237[CrossRef]
    [Google Scholar]
  20. Højberg O., Schnider U., Winteler H. V., Sørensen J., Haas D.. 1999; Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl Environ Microbiol65:4085–4093
    [Google Scholar]
  21. Keel C., Voisard C., Berling C.-H., Kahr G., Défago G.. 1989; Iron sufficiency, a prerequisite for suppression of tobacco black root rot in Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology79:584–589[CrossRef]
    [Google Scholar]
  22. Kiley P. J., Beinert H.. 1999; Oxygen sensing by the global regulator, FNR: the role of the iron–sulfur cluster. . FEMS Microbiol Rev22:341–352
    [Google Scholar]
  23. Kinscherf T. G., Willis D. K.. 1999; Swarming in Pseudomonas syringae B728q requires gacS (lemA) and gacA but not the acyl-homoserine lactone biosynthetic gene ahlI. J Bacteriol181:4133–4136
    [Google Scholar]
  24. Knowles C. J., Bunch A. W.. 1986; Microbial cyanide metabolism. Adv Microb Physiol27:73–111
    [Google Scholar]
  25. Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D.. 1992; Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA89:1562–1566[CrossRef]
    [Google Scholar]
  26. Laville J., Blumer C., Von Schroetter C., Gaia V., Défago G., Keel C., Haas D.. 1998; Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol180:3187–3196
    [Google Scholar]
  27. Mikaelian I., Sergeant A.. 1996; Modification of the overlap extension method for extensive mutagenesis on the same template. Methods Mol Biol57:193–202
    [Google Scholar]
  28. Niehaus F., Hantke K., Unden G.. 1991; Iron content and FNR-dependent gene regulation in Escherichia coli. FEMS Microbiol Lett68:319–323
    [Google Scholar]
  29. Rakeman J. L., Miller S. I.. 1999; Salmonella typhimurium recognition of intestinal environments. Trends Microbiol7:221–223[CrossRef]
    [Google Scholar]
  30. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D.. 1997; The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. . Mol Microbiol24:309–319[CrossRef]
    [Google Scholar]
  31. Rhodius V. A., Busby S. J. W.. 1998; Positive activation of gene expression. Curr Opin Microbiol1:152–159[CrossRef]
    [Google Scholar]
  32. Rich J. J., Kinscherf T. G., Kitten T., Willis D. K.. 1994; Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol176:7468–7475
    [Google Scholar]
  33. Rodgers P. B., Knowles C. J.. 1978; Cyanide production and degradation during growth of Chromobacterium violaceum. . J Gen Microbiol108:261–267[CrossRef]
    [Google Scholar]
  34. Rouault T. A., Klausner R. D.. 1996; Iron–sulfur clusters as biosensors of oxidants and iron. Trends Biochem Sci21:174–177[CrossRef]
    [Google Scholar]
  35. Sacherer P., Défago G., Haas D.. 1994; Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. . FEMS Microbiol Lett116:155–160[CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E.. 1995; The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. . Proc Natl Acad Sci USA92:12255–12259[CrossRef]
    [Google Scholar]
  38. Schnider U., Keel C., Blumer C., Troxler J., Défago G., Haas D.. 1995; Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. . J Bacteriol177:5387–5392
    [Google Scholar]
  39. Spiro S.. 1994; The FNR family of transcriptional regulators. Antonie Leeuwenhoek66:23–36[CrossRef]
    [Google Scholar]
  40. Stanisich V. A., Holloway B. W.. 1972; A mutant sex factor of Pseudomonas aeruginosa. Genet Res19:91–108[CrossRef]
    [Google Scholar]
  41. Voisard C., Keel C., Haas D., Défago G.. 1989; Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. . EMBO J8:351–358
    [Google Scholar]
  42. Voisard C., Bull C. T., Keel C., Laville J., Maurhofer M., Schnider U., Défago G., Haas D.. 1994; Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In Molecular Ecology of Rhizosphere Microorganisms pp.67–89Edited by O’Gara F., Dowling D. N., Boesten B.. Weinheim: VCH;
    [Google Scholar]
  43. Winteler H., Haas D.. 1996; The homologous regulators ANR of Pseudomonas aeruginosa and FNR of Escherichia coli have overlapping but distinct specificities for anaerobically inducible promoters. Microbiology142:685–693[CrossRef]
    [Google Scholar]
  44. Wise A., Brems R., Ramakrishnan V., Villarejo M.. 1996; Sequences in the −35 region of Escherichia coli rpoS-dependent genes promote transcription by Eσs. J Bacteriol178:2785–2793
    [Google Scholar]
  45. Wissing F.. 1975; Cyanide production from glycine by a homogenate from a Pseudomonas species. J Bacteriol121:695–699
    [Google Scholar]
  46. Wong S. M., Carroll P. A., Rahme L. G., Ausubel F. M., Calderwood S. B.. 1998; Modulation of expression of the ToxR regulon in Vibrio cholerae by a member of the two-component family of response regulators. Infect Immun66:5854–5861
    [Google Scholar]
  47. Wösten M.. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev22:127–150[CrossRef]
    [Google Scholar]
  48. Zimmermann A., Reimmann C., Galimand M., Haas D.. 1991; Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli. Mol Microbiol5:1483–1490[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2417
Loading
/content/journal/micro/10.1099/00221287-146-10-2417
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error