1887

Abstract

The structural organization of microbial communities is influenced by many factors, e.g. nutrient composition, shear stress and temperature. This paper presents a general method for quantitative comparison of biofilm structures and assessment of experimental reproducibility between independent biofilm experiments. By using a novel computer program, COMSTAT, biofilm structures of and an isogenic mutant were quantified. The strains were tagged with the green fluorescent protein (GFP) and grown in flow chambers with a defined minimal medium as substrate. Three independent rounds of biofilm experiments were performed and in each round, each of the two variants was grown in two separate channels. Nine image stacks were acquired in each channel 146 h after inoculation. An analysis of variance model incorporating the factors , , and was used to analyse the data calculated by COMSTAT. Experimental reproducibility was verified by estimating the magnitude of the variance of the effects ( \(\sigma_{\mathit{R}}^{2}\) ) and the ( \(\sigma_{\mathit{BR}}^{2}\) ). Mean thickness of the wild-type and mutant biofilms was estimated at 631 μm (SE 081 μm) and 1685 μm (SE 087 μm), respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2409
2000-10-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462409a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2409&mimeType=html&fmt=ahah

References

  1. Adams, J. L. & McLean, R. J. ( 1999; ). Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65, 4285-4287.
    [Google Scholar]
  2. Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjorn, S. P., Givskov, M. & Molin, S. ( 1998; ). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64, 2240-2246.
    [Google Scholar]
  3. Christensen, B. B., Sternberg, C., Andersen, J. B., Palmer, R. J., Nielsen, A. T., Givskov, M. & Molin, S. ( 1999; ). Molecular tools for study of biofilm physiology. Methods Enzymol 310, 20-42.
    [Google Scholar]
  4. Cunliffe, D., Smart, C. A., Alexander, C. & Vulfson, E. N. ( 1999; ). Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol 65, 4995-5002.
    [Google Scholar]
  5. Dalton, H. M., Poulsen, L. K., Halasz, P., Angles, M. L., Goodman, A. E. & Marshall, K. C. ( 1994; ). Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure. J Bacteriol 176, 6900-6906.
    [Google Scholar]
  6. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. ( 1998; ). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.[CrossRef]
    [Google Scholar]
  7. Diggle, P. J., Liang, K. Y. & Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford: Clarendon Press.
  8. Fujita, M., Tanaka, K., Takahashi, H. & Amemura, A. ( 1994; ). Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Mol Microbiol 13, 1071-1077.[CrossRef]
    [Google Scholar]
  9. Grotenhuis, J. T., Smit, M., Plugge, C. M., Xu, Y. S., van Lammeren, A. A., Stams, A. J. & Zehnder, A. J. ( 1991; ). Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57, 1942-1949.
    [Google Scholar]
  10. Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M., Ersbøll, B. & Molin, S. ( 2000; ). Quantification of biofilm structures by the novel computer program comstat. Microbiology 146, 2395-2407.
    [Google Scholar]
  11. Hoaglin, D. C., Mosteller, F. & Tukey, J. W. ( 1991; ). One-way treatment structure in a completely randomized design structure with heterogeneous errors. Fundamentals of Exploratory Analysis of Variance , 16-28. New York:Wiley-Interscience.
  12. Holloway, B. W. ( 1955; ). Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13, 572-581.[CrossRef]
    [Google Scholar]
  13. International Organization for Standardization (1995a). Statistical Methods for Quality Control, vol. 1, Terminology and Symbols, Acceptance Sampling, 4th edn. Geneva, Switzerland: International Organization for Standardization.
  14. International Organization for Standardization (1995b). Statistical methods for quality control, vol. 2, Measurement methods and results, interpretation of statistical data, process control, 4th edn. Geneva, Switzerland: International Organization for Standardization.
  15. Jørgensen, F., Bally, M., Chapon-Herve, V., Michel, G., Lazdunski, A., Williams, P. & Stewart, G. S. ( 1999; ). RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 145, 835-844.[CrossRef]
    [Google Scholar]
  16. Korber, D. R., Lawrence, J. R., Hendry, M. J. & Caldwell, D. E. ( 1993; ). Analysis of spatial variability within Mot+ and Mot Pseudomonas fluorescens biofilms using representative elements. Biofouling 7, 339-358.[CrossRef]
    [Google Scholar]
  17. Kuehn, M., Hausner, M., Bungartz, H. J., Wagner, M., Wilderer, P. A. & Wuertz, S. ( 1998; ). Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 64, 4115-4127.
    [Google Scholar]
  18. Lanzer, M. & Bujard, H. ( 1988; ). Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A 85, 8973-8977.[CrossRef]
    [Google Scholar]
  19. Latifi, A., Foglino, M., Tanaka, K., Williams, P. & Lazdunski, A. ( 1996; ). A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21, 1137-1146.[CrossRef]
    [Google Scholar]
  20. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W. & Caldwell, D. E. ( 1991; ). Optical sectioning of microbial biofilms. J Bacteriol 173, 6558-6567.
    [Google Scholar]
  21. Littell, R. C., Milliken, G. A., Stroup, W. W. & Wolfinger, R. D. (1996). SAS System for Mixed Models. Cary, NC: SAS Institute.
  22. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172, 6568-6572.
    [Google Scholar]
  23. Milliken, G. A. & Johnson, D. E. (1984). Analysis of Messy Data – 1: Designed Experiments. New York: Van Nostrand Reinhold.
  24. Møller, S., Korber, D. R., Wolfaardt, G. M., Molin, S. & Caldwell, D. E. ( 1997; ). Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 63, 2432-2438.
    [Google Scholar]
  25. Murga, R., Stewart, P. S. & Daly, D. ( 1995; ). Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng 45, 503-510.[CrossRef]
    [Google Scholar]
  26. Nielsen, A. T., Tolker-Nielsen, T., Barken, K. B. & Molin, S. ( 2000; ). Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2, 59-68.[CrossRef]
    [Google Scholar]
  27. O’Toole, G. A. & Kolter, R. ( 1998; ). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449-461.[CrossRef]
    [Google Scholar]
  28. Palmer, R. J.Jr ( 1999; ). Microscopy flowcells: perfusion chambers for real-time study of biofilms. Methods Enzymol 310, 160-166.
    [Google Scholar]
  29. Picioreanu, C., Van Loosdrecht, M. C. M. & Heijnen, J. J. ( 1998; ). Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58, 101-116.[CrossRef]
    [Google Scholar]
  30. SAS Institute (1990). SAS Language: Reference, Version 6, 1st edn. Cary, NC: SAS Institute.
  31. SAS Institute (1997). Changes and Enhancements through Release 6·12. Cary, NC: SAS Institute.
  32. Stoodley, P., Boyle, J. D., DeBeer, D. & Lappin-Scott, H. M. ( 1999a; ). Evolving perspectives of biofilm structure. Biofouling 14, 75-90.[CrossRef]
    [Google Scholar]
  33. Stoodley, P., Lewandowski, Z., Boyle, J. D. & Lappin-Scott, H. M. ( 1999b; ). Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65, 83-92.[CrossRef]
    [Google Scholar]
  34. Suh, S. J., Silo-Suh, L., Woods, D. E., Hassett, D. J., West, S. E. & Ohman, D. E. ( 1999; ). Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181, 3890-3897.
    [Google Scholar]
  35. Van Loosdrecht, M. C. M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L. & Heijnen, J. J. ( 1995; ). Biofilm structures. Water Sci Technol 32, 35-43.
    [Google Scholar]
  36. Whiteley, M., Parsek, M. R. & Greenberg, E. P. ( 2000; ). Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J Bacteriol 182, 4356-4360.[CrossRef]
    [Google Scholar]
  37. Wimpenny, J. W. T. & Colasanti, R. ( 1997; ). A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22, 1-16.[CrossRef]
    [Google Scholar]
  38. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., Caldwell, S. J. & Caldwell, D. E. ( 1994; ). Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60, 434-446.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2409
Loading
/content/journal/micro/10.1099/00221287-146-10-2409
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error