-
Volume 93,
Issue 2,
2012
Volume 93, Issue 2, 2012
- Review
-
-
-
Molecular evolution of the insect-specific flaviviruses
There has been an explosion in the discovery of ‘insect-specific’ flaviviruses and/or their related sequences in natural mosquito populations. Herein we review all ‘insect-specific’ flavivirus sequences currently available and conduct phylogenetic analyses of both the ‘insect-specific’ flaviviruses and available sequences of the entire genus Flavivirus. We show that there is no statistical support for virus–mosquito co-divergence, suggesting that the ‘insect-specific’ flaviviruses may have undergone multiple introductions with frequent host switching. We discuss potential implications for the evolution of vectoring within the family Flaviviridae. We also provide preliminary evidence for potential recombination events in the history of cell fusing agent virus. Finally, we consider priorities and guidelines for future research on ‘insect-specific’ flaviviruses, including the vast potential that exists for the study of biodiversity within a range of potential hosts and vectors, and its effect on the emergence and maintenance of the flaviviruses.
-
-
- Animal
-
- RNA viruses
-
-
Hepatitis C virus activates interleukin-1β via caspase-1-inflammasome complex
More LessTHIS ARTICLE HAS BEEN RETRACTED
Interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine involved in the pathogenesis of HCV, but the sensors and underlying mechanisms that facilitate HCV-induced IL-1β proteolytic activation and secretion remains unclear. In this study, we have identified a signalling pathway leading to IL-1β activation and secretion in response to HCV infection. Previous studies have shown the induction and secretion of IL-1β through the inflammasome complex in macrophages/monocytes. Here, we report for the first time the induction and assembly of the NALP3-inflammasome complex in human hepatoma cells infected with HCV (JFH-1). We demonstrate that activation of IL-1β in HCV-infected cells involves the proteolytic processing of pro-caspase-1 into mature caspase-1 in a multiprotein inflammasome complex. Next, we demonstrate that HCV is sensed by NALP3 protein, which recruits the adaptor protein ASC for the assembly of the inflammasome complex. Using a small interfering RNA approach, we further show that components of the inflammasome complex are involved in the activation of IL-1β in HCV-infected cells. Our study also demonstrates the role of reactive oxygen species in HCV-induced IL-1β secretion. Collectively, these observations provide an insight into the mechanism of IL-1β processing and secretion, which is likely to provide novel strategies for targeting the viral or cellular determinants to arrest the progression of liver disease associated with chronic HCV infection.
-
-
-
Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3
Hepatitis C virus (HCV) is a major cause of severe liver disease, and one major contributing factor is thought to involve a dysfunction of virus-specific T-cells. T-cell receptor (TCR) gene therapy with HCV-specific TCRs would increase the number of effector T-cells to promote virus clearance. We therefore took advantage of HLA-A2 transgenic mice to generate multiple TCR candidates against HCV using DNA vaccination followed by generation of stable T-cell–BW (T-BW) tumour hybrid cells. Using this approach, large numbers of non-structural protein 3 (NS3)-specific functional T-BW hybrids can be generated efficiently. These predominantly target the genetically stable HCV genotype 1 NS31073–1081 CTL epitope, frequently associated with clearance of HCV in humans. These T-BW hybrid clones recognized the NS31073 peptide with a high avidity. The hybridoma effectively recognized virus variants and targeted cells with low HLA-A2 expression, which has not been reported previously. Importantly, high-avidity murine TCRs effectively redirected human non-HCV-specific T-lymphocytes to recognize human hepatoma cells with HCV RNA replication driven by a subgenomic HCV replicon. Taken together, TCR candidates with a range of functional avidities, which can be used to study immune recognition of HCV-positive targets, have been generated. This has implications for TCR-related immunotherapy against HCV.
-
-
-
Diversity of murine norovirus in wild-rodent populations: species-specific associations suggest an ancient divergence
More LessA survey of wild-rodent populations has revealed that murine norovirus (MNV) is present and diverse in wild-house mice Mus musculus. This virus is genetically similar to MNV infecting show mice and previously described variants circulating in laboratory mice. The detection of MNV in wild-mouse populations suggests that MNV infection of laboratory mice and show mice (from which laboratory mice are derived) derives from contact with or their origins from wild-mouse progenitors. The survey additionally identified frequent infection of wood mice (Apodemus sylvaticus) with genetically divergent variants of MNV. These viruses are distinct from previously described MNV variants, differing by 22–23 % over the complete genome sequence compared with a maximum of 13 % between M. musculus-derived strains. Comparison with other noroviruses reveals that the Apodemus MNV groups with MNV in genogroup V and shares the same overall genome organization, predicted lengths of proteins encoded by ORFs 1–3 and the existence of a conserved alternative reading frame in VP1 encoding a homologue of the MNV ORF4. Different Apodemus MNV isolates were as variable as MNV isolates and showed evidence for inter-isolate recombination. Our observation of species-specific associations of MNV variants in wild populations suggests that murine noroviruses have an ancient origin, a feature that they may share with other norovirus genogroups.
-
-
-
Analysis of subcellular G3BP redistribution during rubella virus infection
More LessRubella virus (RUBV) replicates slowly and to low titre in vertebrate cultured cells, with minimal cytopathology. To determine whether a cellular stress response is induced during such an infection, the formation of Ras-GAP-SH3 domain-binding protein (G3BP)-containing stress granules (SGs) in RUBV-infected cells was examined. Late in infection, accumulation of G3BP granules was detected, albeit in fewer than half of infected cells. Active virus RNA replication was required for induction of these granules, but they were found to differ from SGs induced by arsenite treatment both in composition (they did not uniformly contain other SG proteins, such as PABP and TIA-1) and in resistance to cycloheximide treatment. Thus, bona fide SGs do not appear to be induced during RUBV infection. The distribution of G3BP, either on its own or in granules, did not overlap with that of dsRNA-containing replication complexes, indicating that it played no role in virus RNA synthesis. However, G3BP did co-localize with viral ssRNAs in perinuclear clusters, suggesting an interaction that could possibly be important in a post-replicative role in virus replication, such as encapsidation.
-
-
-
Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities
More LessThe ORF3b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has a nuclear localization signal (NLS) at its C terminus and antagonizes interferon (IFN) function by modulating the activity of IFN regulatory factor 3 (IRF3). SARS-like coronaviruses (SL-CoVs) found in bats share an identical genome organization and high sequence identity for most of their gene products. In this study, ORF3b homologues were identified from three bat SL-CoV strains. These ORF3b homologues were C-terminally truncated and lacked the C-terminal NLS of SARS-CoV. IFN antagonist activities analysis demonstrated that one SL-CoV ORF3b still possessed IFN antagonist and IRF3-modulating activities. These results indicate that different ORF3b proteins display different IFN antagonist activities and this function is independent of the protein’s nuclear localization, suggesting a potential link between bat SL-CoV ORF3b function and viral pathogenesis.
-
-
-
Growth of influenza A virus is not impeded by simultaneous removal of the cholesterol-binding and acylation sites in the M2 protein
Influenza virus assembly and budding occur in the ‘budozone’, a coalesced raft domain in the plasma membrane. The viral transmembrane protein M2 is implicated in virus particle scission, the ultimate step in virus budding, probably by wedge-like insertion of an amphiphilic helix into the membrane. In order to do this, M2 is hypothesized to be targeted to the edge of the budozone, mediated by acylation and cholesterol binding. It was recently shown that acylation and cholesterol binding affect the membrane association of the cytoplasmic tail of M2 and targeting of the protein to coalesced rafts. This study tested whether combined removal of the acylation site (C50) and the cholesterol recognition/interaction amino acid consensus motifs (key residues Y52 and Y57) in the amphiphilic helix of M2 influenced virus formation. Recombinant influenza viruses were generated in the influenza strain A/WSN/33 background with mutations in one or both of these features. In comparison with the wild-type, all mutant viruses showed very similar growth kinetics in various cell types. Wild-type and mutant viruses differed in their relative M2 content but not regarding the major structural proteins. The morphology of the viruses was not affected by mutating M2. Moreover, wild-type and mutant viruses showed comparable competitive fitness in infected cells. Lastly, a global comparison of M2 sequences revealed that there are natural virus strains with M2 devoid of both lipid-association motifs. Taken together, these results indicate that the acylation and cholesterol-binding motifs in M2 are not crucial for the replication of influenza virus in cell culture, indicating that other factors can target M2 to the budding site.
-
-
-
Genomic and antigenic characterization of Jos virus
Jos virus (JOSV), originally isolated in Jos, Nigeria in 1967, has remained unclassified despite cultivation in tissue culture, development of animal models of infection and implementation of seroprevalence surveys for infection. Here, we report genetic, ultrastructural and serological evidence that JOSV is an orthomyxovirus distinct from but phylogenetically related to viruses of the genus Thogotovirus.
-
-
-
Activation of the beta interferon promoter by paramyxoviruses in the absence of virus protein synthesis
More LessConflicting reports exist regarding the requirement for virus replication in interferon (IFN) induction by paramyxoviruses. Our previous work has demonstrated that pathogen-associated molecular patterns capable of activating the IFN-induction cascade are not normally generated during virus replication, but are associated instead with the presence of defective interfering (DI) viruses. We demonstrate here that DIs of paramyxoviruses, including parainfluenza virus 5, mumps virus and Sendai virus, can activate the IFN-induction cascade and the IFN-β promoter in the absence of virus protein synthesis. As virus protein synthesis is an absolute requirement for paramyxovirus genome replication, our results indicate that these DI viruses do not require replication to activate the IFN-induction cascade.
-
-
-
The 5′ leader sequence of mouse mammary tumor virus enhances expression of the envelope and reporter genes
More LessMouse mammary tumor virus (MMTV) is a complex betaretrovirus, which utilizes a Rev-like auxiliary protein Rem to export the unspliced viral RNA from the nucleus. MMTV env mRNA appears to be exported via a distinct, Rem-independent, mechanism. Here, we analysed the effect of an extensively folded region coinciding with the 5′ leader sequence on env gene expression. We found that the presence of the 5′ leader stimulates expression of the envelope protein. Enhanced Env production was accompanied by increased cytoplasmic levels of env mRNA. The 5′ leader promotes nucleocytoplasmic translocation and increases stability of env mRNA. The region responsible for this effect was mapped to the distal part of the 5′ leader. Furthermore, the 5′ leader inserted in the sense orientation into a heterologous luciferase expression construct increased luciferase activity.
-
- DNA viruses
-
-
Glycoprotein M is important for the efficient incorporation of glycoprotein H–L into herpes simplex virus type 1 particles
More LessHerpes simplex virus type 1 glycoprotein M (gM) is a type III membrane protein conserved throughout the family Herpesviridae. However, despite this conservation, gM is classed as a non-essential protein in most alphaherpesviruses. Previous data have suggested that gM is involved in secondary envelopment, although how gM functions in this process is unknown. Using transfection-based assays, we have previously shown that gM is able to mediate the internalization and subcellular targeting of other viral envelope proteins, suggesting a possible role for gM in localizing herpesvirus envelope proteins to sites of secondary envelopment. To investigate the role of gM in infected cells, we have now analysed viral envelope protein localization and virion incorporation in cells infected with a gM-deletion virus or its revertant. In the absence of gM expression, we observed a substantial inhibition of glycoprotein H–L (gH–L) internalization from the surface of infected cells. Although deletion of gM does not affect expression of gH and gL, virions assembled in the absence of gM demonstrated significantly reduced levels of gH–L, correlating with defects of the gM-negative virus in entry and cell-to-cell spread. These data suggest an important role of gM in mediating the specific internalization and efficient targeting of gH–L to sites of secondary envelopment in infected cells.
-
-
-
Activation of the STAT6 transcription factor in Jurkat T-cells by the herpesvirus saimiri Tip protein
Herpesvirus saimiri (HVS), a T-lymphotropic monkey herpesvirus, induces fulminant T-cell lymphoma in non-natural primate hosts. In addition, it can immortalize human T-cells in vitro. HVS tyrosine kinase-interacting protein (Tip) is an essential viral gene required for T-cell transformation both in vitro and in vivo. In this study, we found that Tip interacts with the STAT6 transcription factor and induces phosphorylation of STAT6 in T-cells. The interaction with STAT6 requires the Tyr127 residue and Lck-binding domain of Tip, which are indispensable for interleukin (IL)-2-independent T-cell transformation by HVS. It was also demonstrated that Tip induces nuclear translocation of STAT6, as well as activation of STAT6-dependent transcription in Jurkat T-cells. Interestingly, the phosphorylated STAT6 mainly colocalized with vesicles containing Tip within T-cells, but was barely detectable in the nucleus. However, nuclear translocation of phospho-STAT6 and transcriptional activation of STAT6 by IL-4 stimulation were not affected significantly in T-cells expressing Tip. Collectively, these findings suggest that the constitutive activation of STAT6 by Tip in T-cells may contribute to IL-2-independent T-cell transformation by HVS.
-
-
-
Characterization of novel canine bocaviruses and their association with respiratory disease
We report the first identification, genetic characterization and disease association studies of several novel species of canine bocaviruses (CBoV). Evolutionary analysis confirmed that CBoV are genetically distinct from the only other known canine bocavirus, minute virus of canines, with which they share less than 63, 62 and 64 % protein identity in NS, NP and VP genes, respectively. Comparative genetic analysis of 37 VP gene variants found in diseased and healthy animals showed that these novel viruses are genetically highly diverse and are common in canine respiratory infections that have remained undetected until now. Interestingly, we observed that a CBoV genotype with a unique deletion in the VP2 gene was significantly more prevalent in animals with respiratory diseases compared with healthy animals.
-
-
-
Examining the cross-reactivity and neutralization mechanisms of a panel of mAbs against adeno-associated virus serotypes 1 and 5
Neutralizing antibodies play a central role in the prevention and clearance of viral infections, but can be detrimental to the use of viral capsids for gene delivery. Antibodies present a major hurdle for ongoing clinical trials using adeno-associated viruses (AAVs); however, relatively little is known about the antigenic epitopes of most AAV serotypes or the mechanism(s) of antibody-mediated neutralization. We developed panels of AAV mAbs by repeatedly immunizing mice with AAV serotype 1 (AAV1) capsids, or by sequentially immunizing with AAV1 followed by AAV5 capsids, in order to examine the efficiency and mechanisms of antibody-mediated neutralization. The antibodies were not cross-reactive between heterologous AAV serotypes except for a low level of recognition of AAV1 capsids by the AAV5 antibodies, probably due to the initial immunization with AAV1. The neutralization efficiency of different IgGs varied and Fab fragments derived from these antibodies were generally poorly neutralizing. The antibodies appeared to display various alternative mechanisms of neutralization, which included inhibition of receptor-binding and interference with a post-attachment step.
-
-
-
Detection of human papillomavirus oncoprotein E7 in liquid-based cytology
The selection and characterization of a set of mouse mAbs against high-risk human papillomavirus (HPV) E7 oncoprotein and the development of protocols for immunocytochemistry (ICC) are described here. A large number of antibodies raised towards HPV16 and 18 E7 were tested for high-risk specificity by ELISA using a panel of HPV E7 proteins. Antibodies detecting low-risk E7 were discarded, resulting in 38 high-risk HPV E7-specific antibodies. The corresponding epitopes were mapped using overlapping HPV E7 fragments displayed on phage particles. Functionality in ICC against formalin-fixed cervical cancer cell lines was demonstrated for ten mAbs; their high-risk specificity was confirmed by Western blot analysis and ICC on transiently transformed cells expressing high- or low-risk HPV E7. These mAbs were specific for one or several of the high-risk strains HPV16, 18, 31, 35 and 45. Specific E7 staining of liquid-based cytology (LBC) samples was demonstrated for seven mAbs and optimized protocols were established. The E716-41 and E718-79 mAbs demonstrated particularly strong and specific staining of cells stored in LBC fluid for at least 6 months. It is proposed that the high-risk HPV E7 staining protocols established in this study may have the potential to be included in a complementary test for the detection and identification of malignantly transformed cells, in for example atypical squamous cells of undetermined significance samples.
-
-
-
Characterization of an Autographa californica multiple nucleopolyhedrovirus dual mutant: ORF82 is required for budded virus production, and a point mutation in LEF-8 alters late and abolishes very late transcription
More LessA temperature-sensitive (ts) Autographa californica multiple nucleopolyhedrovirus dual mutant, ts42, was generated that displayed tiny-plaque and polyhedral inclusion body (PIB)-defective phenotypes at 33 °C. The mutation responsible for the tiny-plaque phenotype was mapped to orf82, which was characterized as a late gene. Its product was not studied. The mutation responsible for the PIB-defective phenotype was mapped to a highly conserved region of lef-8, which encodes the largest subunit of the viral RNA polymerase. These mutations did not cause a global defect in viral DNA replication or a defect in the shutoff of host protein synthesis. However, the mutation in orf82 caused a dramatic defect in the production of progeny budded virus (BV) but did not decrease the infectivity of those BVs that were released. Hence, ORF82 is required for BV production. The mutation in lef-8 affected a conserved residue that is part of a highly conserved region of LEF-8. This mutation abolished very late transcription whilst altering the transcript size and level of transcription of two late genes.
-
-
-
Functional studies of per os infectivity factor 3 of Helicoverpa armigera nucleopolyhedrovirus
More LessPIF3 is one of the six conserved per os infectivity factors (PIFs) of baculoviruses. In this study, PIF3 of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) was analysed by infectivity bioassays using a series of recombinant viruses harbouring various PIF3 truncation/substitution mutants. The results demonstrated that the N-terminal region (L26–Y45) and C-terminal region (T160–Q199) are essential for HearNPV oral infectivity. In the C-terminal T160–Q199 region, there are three conserved cysteines (C162, C164 and C185). Our results showed that substitutions of C162 or C164, predicted to be involved in disulfide-bond formation, led to a severe decrease in HearNPV per os infectivity. Mutation of C185, predicted not to be involved in disulfide-bond formation, did not affect the per os infectivity. The data suggest that disulfide bonds are important for PIF3 conformation and function. Immunofluorescence assays showed that none of the mutations affected the subcellular localization of PIF3 to the nuclear ring zone region of infected cells. Western blot results showed that all mutants except C162G and C185G failed to incorporate PIF3 into occlusion-derived viruses, which resulted in impaired oral infectivity of the latter. The data provide insights for future study of PIF3 function.
-
-
-
Choristoneura fumiferana multiple nucleopolyhedrovirus LEF-3–P143 complex can complement DNA replication and budded virus in an AcMNPV LEF-3–P143 double knockout bacmid
More LessTransient replication assays using Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV) genes suggested that the interactions between P143, the viral helicase and LEF-3, a ssDNA-binding protein, may represent virus species specificity determinants. P143 and LEF-3 are essential for DNA replication in these assays and together with IE-1, the major immediate-early transcription factor, may be part of the viral replisome. In the current report, a lef-3/p143 double-knockout AcMNPV bacmid was constructed that was defective for viral DNA replication and late gene expression. When the homologous lef-3/p143 CfMNPV genes were introduced into this double-knockout bacmid, DNA replication was restored but the level of replication was lower, budded virus production was delayed, and the yields were reduced from those in an AcMNPV-rescue bacmid. These results suggest that to maximize virus replication, baculovirus replisome assembly and function requires protein–protein interactions between P143 and LEF-3, and other viral proteins.
-
-
-
Production of baculovirus defective interfering particles during serial passage is delayed by removing transposon target sites in fp25k
More LessAccumulation of baculovirus defective interfering particle (DIP) and few polyhedra (FP) mutants is a major limitation to continuous large-scale baculovirus production in insect-cell culture. Although overcoming these mutations would result in a cheaper platform for producing baculovirus biopesticides, little is known regarding the mechanism of FP and DIP formation. This issue was addressed by comparing DIP production of wild-type (WT) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) with that of a recombinant AcMNPV (denoted Ac-FPm) containing a modified fp25k gene with altered transposon insertion sites that prevented transposon-mediated production of the FP phenotype. In addition to a reduction in the incidence of the FP phenotype, DIP formation was delayed on passaging of Ac-FPm compared with WT AcMNPV. Specifically, the yield of DIP DNA in Ac-FPm was significantly lower than in WT AcMNPV up to passage 16, thereby demonstrating that modifying the transposon insertion sites increases the genomic stability of AcMNPV. A critical component of this investigation was the optimization of a systematic method based on the use of pulsed-field gel electrophoresis (PFGE) to characterize extracellular virus DNA. Specifically, PFGE was used to detect defective genomes, determine defective genome sizes and quantify the amount of defective genome within a heterogeneous genome population of passaged virus.
-
- Plant
-
-
-
Immunogenic compositions assembled from tobacco mosaic virus-generated spherical particle platforms and foreign antigens
We reported recently that RNA-free spherical particles (SPs) generated by thermal remodelling of tobacco mosaic virus (TMV) are capable of binding GFP to their surface. Here, we show that SPs represent a universal particle platform that can form compositions by binding a diversity of various foreign proteins/epitopes of viral and non-viral origin to their surface. Numerous molecules of a foreign protein linked to the SP surface were revealed by immunogold electron microscopy. Several SP-based compositions were obtained containing one of the following foreign antigens: antigenic determinant A of rubella virus E1 glycoprotein; a recombinant protein containing the M2e epitope of influenza virus A protein M2; a recombinant antigen consisting of three epitopes of influenza virus A haemagglutinin; potato virus X (PVX) coat protein (CP); BSA; and PVX CP fused with the epitope of plum pox virus CP. The ‘mixed’ compositions could be also assembled by binding two different foreign antigens to each of the SPs. Immunogenicity of foreign antigens adsorbed or linked covalently to SPs in the SP-based compositions was examined. The antigenic specificity of foreign antigens was retained, whereas their immunogenicity increased significantly. It was inferred that SPs exhibit immunopotentiating activity, in particular in the form of compositions comprising SP and foreign antigen linked covalently to their surface by formaldehyde.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
