1887

Abstract

The ORF3b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has a nuclear localization signal (NLS) at its C terminus and antagonizes interferon (IFN) function by modulating the activity of IFN regulatory factor 3 (IRF3). SARS-like coronaviruses (SL-CoVs) found in bats share an identical genome organization and high sequence identity for most of their gene products. In this study, ORF3b homologues were identified from three bat SL-CoV strains. These ORF3b homologues were C-terminally truncated and lacked the C-terminal NLS of SARS-CoV. IFN antagonist activities analysis demonstrated that one SL-CoV ORF3b still possessed IFN antagonist and IRF3-modulating activities. These results indicate that different ORF3b proteins display different IFN antagonist activities and this function is independent of the protein’s nuclear localization, suggesting a potential link between bat SL-CoV ORF3b function and viral pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033589-0
2012-02-01
2021-04-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/2/275.html?itemId=/content/journal/jgv/10.1099/vir.0.033589-0&mimeType=html&fmt=ahah

References

  1. Basler C. F., Mikulasova A., Martinez-Sobrido L., Paragas J., Mühlberger E., Bray M., Klenk H. D., Palese P., García-Sastre A. 2003; The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 77:7945–7956 [CrossRef][PubMed]
    [Google Scholar]
  2. Becker M. M., Graham R. L., Donaldson E. F., Rockx B., Sims A. C., Sheahan T., Pickles R. J., Corti D., Johnston R. E.other authors 2008; Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci U S A 105:19944–19949 [CrossRef][PubMed]
    [Google Scholar]
  3. Chan W. S., Wu C., Chow S. C. S., Cheung T., To K.-F., Leung W.-K., Chan P. K. S., Lee K.-C., Ng H.-K.other authors 2005; Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS). Mod Pathol 18:1432–1439 [CrossRef][PubMed]
    [Google Scholar]
  4. Chang T. H., Liao C. L., Lin Y. L. 2006; Flavivirus induces interferon-β gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-κB activation. Microbes Infect 8:157–171 [CrossRef][PubMed]
    [Google Scholar]
  5. Crameri G., Todd S., Grimley S., McEachern J. A., Marsh G. A., Smith C., Tachedjian M., De Jong C., Virtue E. R.other authors 2009; Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS ONE 4:e8266 [CrossRef][PubMed]
    [Google Scholar]
  6. Devaraj S. G., Wang N., Chen Z., Chen Z., Tseng M., Barretto N., Lin R., Peters C. J., Tseng C. T.other authors 2007; Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 282:32208–32221 [CrossRef][PubMed]
    [Google Scholar]
  7. Fitzgerald K. A., McWhirter S. M., Faia K. L., Rowe D. C., Latz E., Golenbock D. T., Coyle A. J., Liao S. M., Maniatis T. 2003; IKKϵ and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496 [CrossRef][PubMed]
    [Google Scholar]
  8. Freundt E. C., Yu L., Park E., Lenardo M. J., Xu X. N. 2009; Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein. J Virol 83:6631–6640 [CrossRef][PubMed]
    [Google Scholar]
  9. Frieman M., Ratia K., Johnston R. E., Mesecar A. D., Baric R. S. 2009; Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-κB signaling. J Virol 83:6689–6705 [CrossRef][PubMed]
    [Google Scholar]
  10. García-Sastre A., Biron C. A. 2006; Type 1 interferons and the virus–host relationship: a lesson in détente. Science 312:879–882 [CrossRef][PubMed]
    [Google Scholar]
  11. Hiscott J., Pitha P., Genin P., Nguyen H., Heylbroeck C., Mamane Y., Algarte M., Lin R. 1999; Triggering the interferon response: the role of IRF-3 transcription factor. J Interferon Cytokine Res 19:1–13 [CrossRef][PubMed]
    [Google Scholar]
  12. Kamitani W., Narayanan K., Huang C., Lokugamage K., Ikegami T., Ito N., Kubo H., Makino S. 2006; Severe acute respiratory syndrome coronavirus NSP1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 103:12885–12890 [CrossRef][PubMed]
    [Google Scholar]
  13. Kochs G., García-Sastre A., Martínez-Sobrido L. 2007; Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 81:7011–7021 [CrossRef][PubMed]
    [Google Scholar]
  14. Kopecky-Bromberg S. A., Martínez-Sobrido L., Frieman M., Baric R. A., Palese P. 2007; Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81:548–557 [CrossRef][PubMed]
    [Google Scholar]
  15. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H.-W., Wong B. H., Wong S. S., Leung S.-Y., Chan K.-H., Yuen K.-Y. 2005; Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102:14040–14045 [CrossRef][PubMed]
    [Google Scholar]
  16. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z.other authors 2005; Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679 [CrossRef][PubMed]
    [Google Scholar]
  17. Liu D. X., Inglis S. C. 1992; Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus. J Virol 66:6143–6154[PubMed]
    [Google Scholar]
  18. Liu D. X., Cavanagh D., Green P., Inglis S. C. 1991; A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology 184:531–544 [CrossRef][PubMed]
    [Google Scholar]
  19. Randall R. E., Goodbourn S. 2008; Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47 [CrossRef][PubMed]
    [Google Scholar]
  20. Ren W., Li W., Yu M., Hao P., Zhang Y., Zhou P., Zhang S., Zhao G., Zhong Y.other authors 2006; Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J Gen Virol 87:3355–3359 [CrossRef][PubMed]
    [Google Scholar]
  21. Shaw M. L., García-Sastre A., Palese P., Basler C. F. 2004; Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 78:5633–5641 [CrossRef][PubMed]
    [Google Scholar]
  22. Tohya Y., Narayanan K., Kamitani W., Huang C., Lokugamage K., Makino S. 2009; Suppression of host gene expression by NSP1 proteins of group 2 bat coronaviruses. J Virol 83:5282–5288 [CrossRef][PubMed]
    [Google Scholar]
  23. Yuan X., Yao Z., Shan Y., Chen B., Yang Z., Wu J., Zhao Z., Chen J., Cong Y. 2005; Nucleolar localization of non-structural protein 3b, a protein specifically encoded by the severe acute respiratory syndrome coronavirus. Virus Res 114:70–79 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033589-0
Loading
/content/journal/jgv/10.1099/vir.0.033589-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error