1887

Abstract

Neutralizing antibodies play a central role in the prevention and clearance of viral infections, but can be detrimental to the use of viral capsids for gene delivery. Antibodies present a major hurdle for ongoing clinical trials using adeno-associated viruses (AAVs); however, relatively little is known about the antigenic epitopes of most AAV serotypes or the mechanism(s) of antibody-mediated neutralization. We developed panels of AAV mAbs by repeatedly immunizing mice with AAV serotype 1 (AAV1) capsids, or by sequentially immunizing with AAV1 followed by AAV5 capsids, in order to examine the efficiency and mechanisms of antibody-mediated neutralization. The antibodies were not cross-reactive between heterologous AAV serotypes except for a low level of recognition of AAV1 capsids by the AAV5 antibodies, probably due to the initial immunization with AAV1. The neutralization efficiency of different IgGs varied and Fab fragments derived from these antibodies were generally poorly neutralizing. The antibodies appeared to display various alternative mechanisms of neutralization, which included inhibition of receptor-binding and interference with a post-attachment step.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.035113-0
2012-02-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/2/347.html?itemId=/content/journal/jgv/10.1099/vir.0.035113-0&mimeType=html&fmt=ahah

References

  1. Allocca M., Tessitore A., Cotugno G., Auricchio A. 2006; AAV-mediated gene transfer for retinal diseases. Expert Opin Biol Ther 6:1279–1294 [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson R., Macdonald I., Corbett T., Whiteway A., Prentice H. G. 2000; A method for the preparation of highly purified adeno-associated virus using affinity column chromatography, protease digestion and solvent extraction. J Virol Methods 85:23–34 [CrossRef][PubMed]
    [Google Scholar]
  3. Boutin S., Monteilhet V., Veron P., Leborgne C., Benveniste O., Montus M. F., Masurier C. 2010; Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 21:704–712 [CrossRef][PubMed]
    [Google Scholar]
  4. Breous E., Somanathan S., Bell P., Wilson J. M. 2011; Inflammation promotes the loss of adeno-associated virus-mediated transgene expression in mouse liver. Gastroenterology 141:348–357.e1–e3 [CrossRef][PubMed]
    [Google Scholar]
  5. Burger C., Gorbatyuk O. S., Velardo M. J., Peden C. S., Williams P., Zolotukhin S., Reier P. J., Mandel R. J., Muzyczka N. 2004; Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317 [CrossRef][PubMed]
    [Google Scholar]
  6. Calcedo R., Vandenberghe L. H., Gao G., Lin J., Wilson J. M. 2009; Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 199:381–390 [CrossRef][PubMed]
    [Google Scholar]
  7. Chao H., Liu Y., Rabinowitz J., Li C., Samulski R. J., Walsh C. E. 2000; Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2:619–623 [CrossRef][PubMed]
    [Google Scholar]
  8. Conway J. E., Rhys C. M., Zolotukhin I., Zolotukhin S., Muzyczka N., Hayward G. S., Byrne B. J. 1999; High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther 6:986–993 [CrossRef][PubMed]
    [Google Scholar]
  9. Dai J., Rabie A. B. 2007; The use of recombinant adeno-associated virus for skeletal gene therapy. Orthod Craniofac Res 10:1–14 [CrossRef][PubMed]
    [Google Scholar]
  10. Davidson B. L., Stein C. S., Heth J. A., Martins I., Kotin R. M., Derksen T. A., Zabner J., Ghodsi A., Chiorini J. A. 2000; Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97:3428–3432 [CrossRef][PubMed]
    [Google Scholar]
  11. DiMattia M., Govindasamy L., Levy H. C., Gurda-Whitaker B., Kalina A., Kohlbrenner E., Chiorini J. A., McKenna R., Muzyczka N. other authors 2005; Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:917–921 [CrossRef][PubMed]
    [Google Scholar]
  12. Dimmock N. J. 1993; Neutralization of animal viruses. Curr Top Microbiol Immunol 183:1–149[PubMed]
    [Google Scholar]
  13. Di Pasquale G., Davidson B. L., Stein C. S., Martins I., Scudiero D., Monks A., Chiorini J. A. 2003; Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 9:1306–1312 [CrossRef][PubMed]
    [Google Scholar]
  14. Gao G., Alvira M. R., Somanathan S., Lu Y., Vandenberghe L. H., Rux J. J., Calcedo R., Sanmiguel J., Abbas Z., Wilson J. M. 2003; Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci U S A 100:6081–6086 [CrossRef][PubMed]
    [Google Scholar]
  15. Gao G., Vandenberghe L. H., Alvira M. R., Lu Y., Calcedo R., Zhou X., Wilson J. M. 2004; Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388 [CrossRef][PubMed]
    [Google Scholar]
  16. Govindasamy L., Padron E., McKenna R., Muzyczka N., Kaludov N., Chiorini J. A., Agbandje-McKenna M. 2006; Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J Virol 80:11556–11570 [CrossRef][PubMed]
    [Google Scholar]
  17. Grieger J. C., Samulski R. J. 2005; Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv Biochem Eng Biotechnol 99:119–145[PubMed]
    [Google Scholar]
  18. Grimm D., Kay M. A. 2003; From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 3:281–304 [CrossRef][PubMed]
    [Google Scholar]
  19. Hafenstein S., Bowman V. D., Sun T., Nelson C. D., Palermo L. M., Chipman P. R., Battisti A. J., Parrish C. R., Rossmann M. G. 2009; Structural comparison of different antibodies interacting with parvovirus capsids. J Virol 83:5556–5566 [CrossRef][PubMed]
    [Google Scholar]
  20. Halbert C. L., Rutledge E. A., Allen J. M., Russell D. W., Miller A. D. 2000; Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol 74:1524–1532 [CrossRef][PubMed]
    [Google Scholar]
  21. Harbison C. E., Lyi S. M., Weichert W. S., Parrish C. R. 2009; Early steps in cell infection by parvoviruses: host-specific differences in cell receptor binding but similar endosomal trafficking. J Virol 83:10504–10514 [CrossRef][PubMed]
    [Google Scholar]
  22. Hernandez Y. J., Wang J., Kearns W. G., Loiler S., Poirier A., Flotte T. R. 1999; Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model. J Virol 73:8549–8558[PubMed]
    [Google Scholar]
  23. Huttner N. A., Girod A., Perabo L., Edbauer D., Kleinschmidt J. A., Büning H., Hallek M. 2003; Genetic modifications of the adeno-associated virus type 2 capsid reduce the affinity and the neutralizing effects of human serum antibodies. Gene Ther 10:2139–2147 [CrossRef][PubMed]
    [Google Scholar]
  24. Johnson J. S., Li C., DiPrimio N., Weinberg M. S., McCown T. J., Samulski R. J. 2010; Mutagenesis of adeno-associated virus type 2 capsid protein VP1 uncovers new roles for basic amino acids in trafficking and cell-specific transduction. J Virol 84:8888–8902 [CrossRef][PubMed]
    [Google Scholar]
  25. Kaludov N., Brown K. E., Walters R. W., Zabner J., Chiorini J. A. 2001; Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 75:6884–6893 [CrossRef][PubMed]
    [Google Scholar]
  26. Kerr J. R., Cotmore S. F., Bloom M. E., Linden R. M., Parrish C. R. 2006 Parvoviruses London: Hodder Arnold;
    [Google Scholar]
  27. Klasse P. J., Sattentau Q. J. 2001; Mechanisms of virus neutralization by antibody. Curr Top Microbiol Immunol 260:87–108[PubMed]
    [Google Scholar]
  28. Klasse P. J., Sattentau Q. J. 2002; Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 83:2091–2108[PubMed]
    [Google Scholar]
  29. Kuck D., Kern A., Kleinschmidt J. A. 2007; Development of AAV serotype-specific ELISAs using novel monoclonal antibodies. J Virol Methods 140:17–24 [CrossRef][PubMed]
    [Google Scholar]
  30. Law M., Hangartner L. 2008; Antibodies against viruses: passive and active immunization. Curr Opin Immunol 20:486–492 [CrossRef][PubMed]
    [Google Scholar]
  31. Lerch T. F., Xie Q., Chapman M. S. 2010; The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion. Virology 403:26–36 [CrossRef][PubMed]
    [Google Scholar]
  32. Li Q., Miller R., Han P. Y., Pang J., Dinculescu A., Chiodo V., Hauswirth W. W. 2008; Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 14:1760–1769[PubMed]
    [Google Scholar]
  33. Lin J., Calcedo R., Vandenberghe L. H., Figueredo J. M., Wilson J. M. 2008; Impact of preexisting vector immunity on the efficacy of adeno-associated virus-based HIV-1 Gag vaccines. Hum Gene Ther 19:663–669 [CrossRef][PubMed]
    [Google Scholar]
  34. Lochrie M. A., Tatsuno G. P., Christie B., McDonnell J. W., Zhou S., Surosky R., Pierce G. F., Colosi P. 2006; Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J Virol 80:821–834 [CrossRef][PubMed]
    [Google Scholar]
  35. López-Bueno A., Mateu M. G., Almendral J. M. 2003; High mutant frequency in populations of a DNA virus allows evasion from antibody therapy in an immunodeficient host. J Virol 77:2701–2708 [CrossRef][PubMed]
    [Google Scholar]
  36. Lorain S., Gross D. A., Goyenvalle A., Danos O., Davoust J., Garcia L. 2008; Transient immunomodulation allows repeated injections of AAV1 and correction of muscular dystrophy in multiple muscles. Mol Ther 16:541–547 [CrossRef][PubMed]
    [Google Scholar]
  37. Maersch S., Huber A., Büning H., Hallek M., Perabo L. 2010; Optimization of stealth adeno-associated virus vectors by randomization of immunogenic epitopes. Virology 397:167–175 [CrossRef][PubMed]
    [Google Scholar]
  38. Maguire A. M., Simonelli F., Pierce E. A., Pugh E. N. Jr, Mingozzi F., Bennicelli J., Banfi S., Marshall K. A., Testa F. other authors 2008; Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248 [CrossRef][PubMed]
    [Google Scholar]
  39. Mallery D. L., McEwan W. A., Bidgood S. R., Towers G. J., Johnson C. M., James L. C. 2010; Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci U S A 107:19985–19990 [CrossRef][PubMed]
    [Google Scholar]
  40. Marks W. J. Jr, Bartus R. T., Siffert J., Davis C. S., Lozano A., Boulis N., Vitek J., Stacy M., Turner D., Verhagen L. 2010; Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172 [CrossRef][PubMed]
    [Google Scholar]
  41. Michelfelder S., Trepel M. 2009; Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet 67:29–60 [CrossRef][PubMed]
    [Google Scholar]
  42. Miller E. B., Gurda-Whitaker B., Govindasamy L., McKenna R., Zolotukhin S., Muzyczka N., Agbandje-McKenna M. 2006; Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1271–1274 [CrossRef][PubMed]
    [Google Scholar]
  43. Mingozzi F., High K. A. 2011; Immune responses to AAV in clinical trials. Curr Gene Ther 11:321–330 [CrossRef][PubMed]
    [Google Scholar]
  44. Monteilhet V., Saheb S., Boutin S., Leborgne C., Veron P., Montus M. F., Moullier P., Benveniste O., Masurier C. 2011; A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8. Mol Ther 19:2084–2091 [CrossRef][PubMed]
    [Google Scholar]
  45. Moskalenko M., Chen L., van Roey M., Donahue B. A., Snyder R. O., McArthur J. G., Patel S. D. 2000; Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol 74:1761–1766 [CrossRef][PubMed]
    [Google Scholar]
  46. Mueller C., Flotte T. R. 2008; Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15:858–863 [CrossRef][PubMed]
    [Google Scholar]
  47. Murphy S. L., Li H., Mingozzi F., Sabatino D. E., Hui D. J., Edmonson S. A., High K. A. 2009; Diverse IgG subclass responses to adeno-associated virus infection and vector administration. J Med Virol 81:65–74 [CrossRef][PubMed]
    [Google Scholar]
  48. Nam H. J., Lane M. D., Padron E., Gurda B., McKenna R., Kohlbrenner E., Aslanidi G., Byrne B., Muzyczka N. other authors 2007; Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 81:12260–12271 [CrossRef][PubMed]
    [Google Scholar]
  49. Ng R., Govindasamy L., Gurda B. L., McKenna R., Kozyreva O. G., Samulski R. J., Parent K. N., Baker T. S., Agbandje-McKenna M. 2010; Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol 84:12945–12957 [CrossRef][PubMed]
    [Google Scholar]
  50. Parren P. W., Burton D. R. 2001; The antiviral activity of antibodies in vitro and in vivo . Adv Immunol 77:195–262 [CrossRef][PubMed]
    [Google Scholar]
  51. Parrish C. R., Carmichael L. E. 1983; Antigenic structure and variation of canine parvovirus type-2, feline panleukopenia virus, and mink enteritis virus. Virology 129:401–414 [CrossRef][PubMed]
    [Google Scholar]
  52. Petry H., Brooks A., Orme A., Wang P., Liu P., Xie J., Kretschmer P., Qian H. S., Hermiston T. W., Harkins R. N. 2008; Effect of viral dose on neutralizing antibody response and transgene expression after AAV1 vector re-administration in mice. Gene Ther 15:54–60 [CrossRef][PubMed]
    [Google Scholar]
  53. Pierson T. C., Fremont D. H., Kuhn R. J., Diamond M. S. 2008; Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 4:229–238 [CrossRef][PubMed]
    [Google Scholar]
  54. Sabo M. C., Luca V., Prentoe J., Hopcraft S. E., Blight K. J., Yi M., Lemon S. M., Ball J. K., Bukh J. other authors 2011; Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a post-attachment step. J Virol 85:7005–7019 [CrossRef]
    [Google Scholar]
  55. Scallan C. D., Lillicrap D., Jiang H., Qian X., Patarroyo-White S. L., Parker A. E., Liu T., Vargas J., Nagy D. other authors 2003; Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector. Blood 102:2031–2037 [CrossRef][PubMed]
    [Google Scholar]
  56. Strassheim M. L., Gruenberg A., Veijalainen P., Sgro J.-Y., Parrish C. R. 1994; Two dominant neutralizing antigenic determinants of canine parvovirus are found on the threefold spike of the virus capsid. Virology 198:175–184 [CrossRef][PubMed]
    [Google Scholar]
  57. Sui J., Li W., Murakami A., Tamin A., Matthews L. J., Wong S. K., Moore M. J., Tallarico A. S., Olurinde M. other authors 2004; Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A 101:2536–2541 [CrossRef][PubMed]
    [Google Scholar]
  58. Sun J. Y., Anand-Jawa V., Chatterjee S., Wong K. K. 2003; Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 10:964–976 [CrossRef][PubMed]
    [Google Scholar]
  59. Urabe M., Ding C., Kotin R. M. 2002; Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943 [CrossRef][PubMed]
    [Google Scholar]
  60. van der Marel S., Comijn E. M., Verspaget H. W., van Deventer S., van den Brink G. R., Petry H., Hommes D. W., Ferreira V. 2011; Neutralizing antibodies against adeno-associated viruses in inflammatory bowel disease patients: implications for gene therapy. Inflamm Bowel Dis 17:2436–2442 [CrossRef][PubMed]
    [Google Scholar]
  61. Van Vliet K. M., Blouin V., Brument N., Agbandje-McKenna M., Snyder R. O. 2008; The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol 437:51–91 [CrossRef][PubMed]
    [Google Scholar]
  62. Walters R. W., Yi S. M., Keshavjee S., Brown K. E., Welsh M. J., Chiorini J. A., Zabner J. 2001; Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 276:20610–20616 [CrossRef][PubMed]
    [Google Scholar]
  63. Willey S., Aasa-Chapman M. M. 2008; Humoral immunity to HIV-1: neutralisation and antibody effector functions. Trends Microbiol 16:596–604 [CrossRef][PubMed]
    [Google Scholar]
  64. Wistuba A., Kern A., Weger S., Grimm D., Kleinschmidt J. A. 1997; Subcellular compartmentalization of adeno-associated virus type 2 assembly. J Virol 71:1341–1352[PubMed]
    [Google Scholar]
  65. Wobus C. E., Hügle-Dörr B., Girod A., Petersen G., Hallek M., Kleinschmidt J. A. 2000; Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J Virol 74:9281–9293 [CrossRef][PubMed]
    [Google Scholar]
  66. Wu Z., Asokan A., Grieger J. C., Govindasamy L., Agbandje-McKenna M., Samulski R. J. 2006a; Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 80:11393–11397 [CrossRef][PubMed]
    [Google Scholar]
  67. Wu Z., Asokan A., Samulski R. J. 2006b; Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327 [CrossRef][PubMed]
    [Google Scholar]
  68. Wu Z., Miller E., Agbandje-McKenna M., Samulski R. J. 2006c; α2,3 and α2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 80:9093–9103 [CrossRef][PubMed]
    [Google Scholar]
  69. Xiao W., Chirmule N., Berta S. C., McCullough B., Gao G., Wilson J. M. 1999; Gene therapy vectors based on adeno-associated virus type 1. J Virol 73:3994–4003[PubMed]
    [Google Scholar]
  70. Zabner J., Seiler M., Walters R., Kotin R. M., Fulgeras W., Davidson B. L., Chiorini J. A. 2000; Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol 74:3852–3858 [CrossRef][PubMed]
    [Google Scholar]
  71. Zaiss A. K., Muruve D. A. 2008; Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther 15:808–816 [CrossRef][PubMed]
    [Google Scholar]
  72. Zhong L., Li W., Li Y., Zhao W., Wu J., Li B., Maina N., Bischof D., Qing K. other authors 2006; Evaluation of primitive murine hematopoietic stem and progenitor cell transduction in vitro and in vivo by recombinant adeno-associated virus vector serotypes 1 through 5. Hum Gene Ther 17:321–333 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.035113-0
Loading
/content/journal/jgv/10.1099/vir.0.035113-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error