1887

Abstract

There has been an explosion in the discovery of ‘insect-specific’ flaviviruses and/or their related sequences in natural mosquito populations. Herein we review all ‘insect-specific’ flavivirus sequences currently available and conduct phylogenetic analyses of both the ‘insect-specific’ flaviviruses and available sequences of the entire genus . We show that there is no statistical support for virus–mosquito co-divergence, suggesting that the ‘insect-specific’ flaviviruses may have undergone multiple introductions with frequent host switching. We discuss potential implications for the evolution of vectoring within the family . We also provide preliminary evidence for potential recombination events in the history of cell fusing agent virus. Finally, we consider priorities and guidelines for future research on ‘insect-specific’ flaviviruses, including the vast potential that exists for the study of biodiversity within a range of potential hosts and vectors, and its effect on the emergence and maintenance of the flaviviruses.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.036525-0
2012-02-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/2/223.html?itemId=/content/journal/jgv/10.1099/vir.0.036525-0&mimeType=html&fmt=ahah

References

  1. Aaskov J., Buzacott K., Thu H. M., Lowry K., Holmes E. C. 2006; Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 311:236–238 [View Article][PubMed]
    [Google Scholar]
  2. Aranda C., Sánchez-Seco M. P., Cáceres F., Escosa R., Gálvez J. C., Masià M., Marqués E., Ruíz S., Alba A. et al. 2009; Detection and monitoring of mosquito flaviviruses in Spain between 2001 and 2005. Vector Borne Zoonotic Dis 9:171–178 [View Article][PubMed]
    [Google Scholar]
  3. Billoir F., de Chesse R., Tolou H., de Micco P., Gould E. A., de Lamballerie X. 2000; Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J Gen Virol 81:781–790
    [Google Scholar]
  4. Bolling B. G., Eisen L., Moore C. G., Blair C. D. 2011; Insect-specific flaviviruses from Culex mosquitoes in Colorado, with evidence of vertical transmission. Am J Trop Med Hyg 85:169–177 [View Article][PubMed]
    [Google Scholar]
  5. Brackney D. E., Scott J. C., Sagawa F., Woodward J. E., Miller N. A., Schilkey F. D., Mudge J., Wilusz J., Olson K. E. other authors 2010; C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 4:e856 [View Article][PubMed]
    [Google Scholar]
  6. Calzolari M., Bonilauri P., Bellini R., Caimi M., Defilippo F., Maioli G., Albieri A., Medici A., Veronesi R. other authors 2010; Arboviral survey of mosquitoes in two northern Italian regions in 2007 and 2008. Vector Borne Zoonotic Dis 10:875–884 [View Article][PubMed]
    [Google Scholar]
  7. Cammisa-Parks H., Cisar L. A., Kane A., Stollar V. 1992; The complete nucleotide sequence of cell fusing agent (CFA): homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology 189:511–524 [CrossRef]
    [Google Scholar]
  8. Castresana J. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552 [CrossRef]
    [Google Scholar]
  9. Charleston M. A., Robertson D. L. 2002; Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst Biol 51:528–535 [View Article][PubMed]
    [Google Scholar]
  10. Cook S., Holmes E. C. 2006; A multigene analysis of the phylogenetic relationships among the flaviviruses (family: Flaviviridae) and the evolution of vector transmission. Arch Virol 151:309–325 [View Article][PubMed]
    [Google Scholar]
  11. Cook S., Bennett S. N., Holmes E. C., De Chesse R., Moureau G., de Lamballerie X. 2006; Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 87:735–748 [View Article][PubMed]
    [Google Scholar]
  12. Cook S., Moureau G., Harbach R. E., Mukwaya L., Goodger K., Ssenfuka F., Gould E., Holmes E. C., de Lamballerie X. 2009; Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol 90:2669–2678 [View Article][PubMed]
    [Google Scholar]
  13. Crabtree M. B., Sang R. C., Stollar V., Dunster L. M., Miller B. R. 2003; Genetic and phenotypic characterization of the newly described insect flavivirus, Kamiti River virus. Arch Virol 148:1095–1118 [View Article][PubMed]
    [Google Scholar]
  14. Crabtree M. B., Nga P. T., Miller B. R. 2009; Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam. Arch Virol 154:857–860 [View Article][PubMed]
    [Google Scholar]
  15. Crochu S., Cook S., Attoui H., Charrel R. N., De Chesse R., Belhouchet M., Lemasson J. J., de Micco P., de Lamballerie X. 2004; Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol 85:1971–1980 [View Article][PubMed]
    [Google Scholar]
  16. de Lamballerie X., Crochu S., Billoir F., Neyts J., de Micco P., Holmes E. C., Gould E. A. 2002; Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus . J Gen Virol 83:2443–2454[PubMed]
    [Google Scholar]
  17. Drummond A. J., Rambaut A. 2007; beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214 [View Article][PubMed]
    [Google Scholar]
  18. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  19. Farfan-Ale J. A., Loroño-Pino M. A., Garcia-Rejon J. E., Hovav E., Powers A. M., Lin M., Dorman K. S., Platt K. B., Bartholomay L. C. other authors 2009; Detection of RNA from a novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the Yucatan Peninsula of Mexico. Am J Trop Med Hyg 80:85–95[PubMed]
    [Google Scholar]
  20. Farfan-Ale J. A., Loroño-Pino M. A., Garcia-Rejon J. E., Soto V., Lin M., Staley M., Dorman K. S., Bartholomay L. C., Hovav E., Blitvich B. J. 2010; Detection of flaviviruses and orthobunyaviruses in mosquitoes in the Yucatan Peninsula of Mexico in 2008. Vector Borne Zoonotic Dis 10:777–783 [View Article][PubMed]
    [Google Scholar]
  21. Fauquet C. M., Fargette D. 2005; International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2:64 [View Article][PubMed]
    [Google Scholar]
  22. Firth A. E., Atkins J. F. 2009; A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1′ may derive from ribosomal frameshifting. Virol J 6:14 [View Article][PubMed]
    [Google Scholar]
  23. Firth A. E., Blitvich B. J., Wills N. M., Miller C. L., Atkins J. F. 2010; Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 399:153–166 [View Article][PubMed]
    [Google Scholar]
  24. Gaunt M. W., Sall A. A., de Lamballerie X., Falconar A. K., Dzhivanian T. I., Gould E. A. 2001; Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82:1867–1876[PubMed]
    [Google Scholar]
  25. Gould E. A., Moss S. R., Turner S. L. 2004; Evolution and dispersal of encephalitic flaviviruses. Arch Virol Suppl 18:65–84[PubMed]
    [Google Scholar]
  26. Harbach R. E., Kitching I. J. 1998; Phylogeny and classification of the Culicidae (Diptera). Syst Entomol 23:327–370 [CrossRef]
    [Google Scholar]
  27. Hoshino K., Isawa H., Tsuda Y., Yano K., Sasaki T., Yuda M., Takasaki T., Kobayashi M., Sawabe K. 2007; Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359:405–414 [View Article][PubMed]
    [Google Scholar]
  28. Hoshino K., Isawa H., Tsuda Y., Sawabe K., Kobayashi M. 2009; Isolation and characterization of a new insect flavivirus from Aedes albopictus and Aedes flavopictus mosquitoes in Japan. Virology 391:119–129 [View Article][PubMed]
    [Google Scholar]
  29. Huelsenbeck J. P., Ronquist F. 2001; MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [View Article][PubMed]
    [Google Scholar]
  30. Kihara Y., Satho T., Eshita Y., Sakai K., Kotaki A., Takasaki T., Rongsriyam Y., Komalamisra N., Srisawat R., Lapcharoen P. 2007; Rapid determination of viral RNA sequences in mosquitoes collected in the field. J Virol Methods 146:372–374 [View Article][PubMed]
    [Google Scholar]
  31. Kim D. Y., Guzman H., Bueno R. Jr, Dennett J. A., Auguste A. J., Carrington C. V., Popov V. L., Weaver S. C., Beasley D. W., Tesh R. B. 2009; Characterization of Culex flavivirus (Flaviviridae) strains isolated from mosquitoes in the United States and Trinidad. Virology 386:154–159 [View Article][PubMed]
    [Google Scholar]
  32. Kuno G. 2007; Host range specificity of flaviviruses: correlation with in vitro replication. J Med Entomol 44:93–101 [View Article][PubMed]
    [Google Scholar]
  33. Kuno G., Chang G. J. 2005; Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18:608–637 [View Article][PubMed]
    [Google Scholar]
  34. Kuno G., Chang G. J., Tsuchiya K. R., Karabatsos N., Cropp C. B. 1998; Phylogeny of the genus Flavivirus . J Virol 72:73–83[PubMed]
    [Google Scholar]
  35. Lobo F. P., Mota B. E., Pena S. D., Azevedo V., Macedo A. M., Tauch A., Machado C. R., Franco G. R. 2009; Virus–host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS One 4:e6282 [View Article][PubMed]
    [Google Scholar]
  36. Martin D. P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P. 2010; rdp3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463 [View Article][PubMed]
    [Google Scholar]
  37. Morales-Betoulle M. E., Monzón Pineda M. L., Sosa S. M., Panella N., López M. R., Cordón-Rosales C., Komar N., Powers A., Johnson B. W. 2008; Culex flavivirus isolates from mosquitoes in Guatemala. J Med Entomol 45:1187–1190 [View Article][PubMed]
    [Google Scholar]
  38. Moureau G., Ninove L., Izri A., Cook S., de Lamballerie X., Charrel R. N. 2010; Flavivirus RNA in phlebotomine sandflies. Vector Borne Zoonotic Dis 10:195–197 [View Article][PubMed]
    [Google Scholar]
  39. Pabbaraju K., Ho K. C., Wong S., Fox J. D., Kaplen B., Tyler S., Drebot M., Tilley P. A. 2009; Surveillance of mosquito-borne viruses in Alberta using reverse transcription polymerase chain reaction with generic primers. J Med Entomol 46:640–648 [View Article][PubMed]
    [Google Scholar]
  40. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  41. Pybus O. G., Rambaut A., Holmes E. C., Harvey P. H. 2002; New inferences from tree shape: numbers of missing taxa and population growth rates. Syst Biol 51:881–888 [View Article][PubMed]
    [Google Scholar]
  42. Ramsden C., Holmes E. C., Charleston M. A. 2009; Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. Mol Biol Evol 26:143–153 [View Article][PubMed]
    [Google Scholar]
  43. Reinert J. F., Harbach R. E., Kitching I. J. 2009; Phylogeny and classification of tribe Aedini (Diptera: Culicidae). Zool J Linn Soc 157:700–794 [View Article]
    [Google Scholar]
  44. Roehrig J. T., Hunt A. R., Johnson A. J., Hawkes R. A. 1989; Synthetic peptides derived from the deduced amino acid sequence of the E-glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. Virology 171:49–60 [CrossRef]
    [Google Scholar]
  45. Roiz D., Vázquez A., Seco M. P., Tenorio A., Rizzoli A. 2009; Detection of novel insect flavivirus sequences integrated in Aedes albopictus (Diptera: Culicidae) in Northern Italy. Virol J 6:93 [View Article][PubMed]
    [Google Scholar]
  46. Rossi G. C., Harbach R. E. 2008; Phytotelmatomyia, a new neotropical subgenus of Culex (Diptera: Culicidae). Zootaxa 1879:1–17
    [Google Scholar]
  47. Sánchez-Seco M. P., Vázquez A., Collao X., Hernández L., Aranda C., Ruiz S., Escosa R., Marqués E., Bustillo M. A. other authors 2010; Surveillance of arboviruses in Spanish wetlands: detection of new flavi- and phleboviruses. Vector Borne Zoonotic Dis 10:203–206 [View Article][PubMed]
    [Google Scholar]
  48. Sang R. C., Gichogo A., Gachoya J., Dunster M. D., Ofula V., Hunt A. R., Crabtree M. B., Miller B. R., Dunster L. M. 2003; Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol 148:1085–1093 [View Article][PubMed]
    [Google Scholar]
  49. Scott J. C., Brackney D. E., Campbell C. L., Bondu-Hawkins V., Hjelle B., Ebel G. D., Olson K. E., Blair C. D. 2010; Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl Trop Dis 4:e848 [View Article][PubMed]
    [Google Scholar]
  50. St John O. 2007 Phylogeny of the genus Culex (Diptera: Culicidae). MRes thesis, Imperial College, London, UK
  51. Swofford D. L. 2003; paup*: Phylogenetic analysis using parsimony (*and other methods). Sunderland, MA: Sinauer Associates;
  52. Stollar V., Thomas V. L. 1975; An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64:367–377 [CrossRef]
    [Google Scholar]
  53. Taucher C., Berger A., Mandl C. W. 2010; A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J Virol 84:599–611 [View Article][PubMed]
    [Google Scholar]
  54. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  55. Tolou H. J., Couissinier-Paris P., Durand J. P., Mercier V., de Pina J. J., de Micco P., Billoir F., Charrel R. N., de Lamballerie X. 2001; Evidence for recombination in natural populations of dengue virus type 1 based on the analysis of complete genome sequences. J Gen Virol 82:1283–1290[PubMed]
    [Google Scholar]
  56. Twiddy S. S., Holmes E. C. 2003; The extent of homologous recombination in members of the genus Flavivirus . J Gen Virol 84:429–440 [View Article][PubMed]
    [Google Scholar]
  57. Uzcategui N. Y., Camacho D., Comach G., Cuello de Uzcategui R., Holmes E. C., Gould E. A. 2001; Molecular epidemiology of dengue type 2 virus in Venezuela: evidence for in situ virus evolution and recombination. J Gen Virol 82:2945–2953[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.036525-0
Loading
/content/journal/jgv/10.1099/vir.0.036525-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error