1887

Abstract

Influenza virus assembly and budding occur in the ‘budozone’, a coalesced raft domain in the plasma membrane. The viral transmembrane protein M2 is implicated in virus particle scission, the ultimate step in virus budding, probably by wedge-like insertion of an amphiphilic helix into the membrane. In order to do this, M2 is hypothesized to be targeted to the edge of the budozone, mediated by acylation and cholesterol binding. It was recently shown that acylation and cholesterol binding affect the membrane association of the cytoplasmic tail of M2 and targeting of the protein to coalesced rafts. This study tested whether combined removal of the acylation site (C50) and the cholesterol recognition/interaction amino acid consensus motifs (key residues Y52 and Y57) in the amphiphilic helix of M2 influenced virus formation. Recombinant influenza viruses were generated in the influenza strain A/WSN/33 background with mutations in one or both of these features. In comparison with the wild-type, all mutant viruses showed very similar growth kinetics in various cell types. Wild-type and mutant viruses differed in their relative M2 content but not regarding the major structural proteins. The morphology of the viruses was not affected by mutating M2. Moreover, wild-type and mutant viruses showed comparable competitive fitness in infected cells. Lastly, a global comparison of M2 sequences revealed that there are natural virus strains with M2 devoid of both lipid-association motifs. Taken together, these results indicate that the acylation and cholesterol-binding motifs in M2 are not crucial for the replication of influenza virus in cell culture, indicating that other factors can target M2 to the budding site.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038554-0
2012-02-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/2/282.html?itemId=/content/journal/jgv/10.1099/vir.0.038554-0&mimeType=html&fmt=ahah

References

  1. Castrucci M. R. , Hughes M. , Calzoletti L. , Donatelli I. , Wells K. , Takada A. , Kawaoka Y. . ( 1997; ). The cysteine residues of the M2 protein are not required for influenza A virus replication. . Virology 238:, 128–134. [CrossRef] [PubMed]
    [Google Scholar]
  2. Charollais J. , Van Der Goot F. G. . ( 2009; ). Palmitoylation of membrane proteins. . Mol Membr Biol 26:, 55–66. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chen B. J. , Leser G. P. , Jackson D. , Lamb R. A. . ( 2008; ). The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. . J Virol 82:, 10059–10070. [CrossRef] [PubMed]
    [Google Scholar]
  4. Eisenberg D. , Weiss R. M. , Terwilliger T. C. . ( 1984; ). The hydrophobic moment detects periodicity in protein hydrophobicity. . Proc Natl Acad Sci U S A 81:, 140–144. [CrossRef] [PubMed]
    [Google Scholar]
  5. Engel S. , Scolari S. , Thaa B. , Krebs N. , Korte T. , Herrmann A. , Veit M. . ( 2010; ). FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. . Biochem J 425:, 567–573. [CrossRef] [PubMed]
    [Google Scholar]
  6. Grantham M. L. , Wu W.-H. , Lalime E. N. , Lorenzo M. E. , Klein S. L. , Pekosz A. . ( 2009; ). Palmitoylation of the influenza A virus M2 protein is not required for virus replication in vitro but contributes to virus virulence. . J Virol 83:, 8655–8661. [CrossRef] [PubMed]
    [Google Scholar]
  7. Hess S. T. , Kumar M. , Verma A. , Farrington J. , Kenworthy A. , Zimmerberg J. . ( 2005; ). Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. . J Cell Biol 169:, 965–976. [CrossRef] [PubMed]
    [Google Scholar]
  8. Hoffmann E. , Neumann G. , Kawaoka Y. , Hobom G. , Webster R. G. . ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. . Proc Natl Acad Sci U S A 97:, 6108–6113. [CrossRef] [PubMed]
    [Google Scholar]
  9. Jacobs J. P. , Jones C. M. , Baille J. P. . ( 1970; ). Characteristics of a human diploid cell designated MRC-5. . Nature 227:, 168–170. [CrossRef] [PubMed]
    [Google Scholar]
  10. Lamb R. A. , Zebedee S. L. , Richardson C. D. . ( 1985; ). Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. . Cell 40:, 627–633. [CrossRef] [PubMed]
    [Google Scholar]
  11. Leser G. P. , Lamb R. A. . ( 2005; ). Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. . Virology 342:, 215–227. [CrossRef] [PubMed]
    [Google Scholar]
  12. McCown M. F. , Pekosz A. . ( 2006; ). Distinct domains of the influenza A virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate infectious virus production. . J Virol 80:, 8178–8189. [CrossRef] [PubMed]
    [Google Scholar]
  13. Morozova D. , Weiss M. . ( 2010; ). On the role of acylation of transmembrane proteins. . Biophys J 98:, 800–804. [CrossRef] [PubMed]
    [Google Scholar]
  14. Murata M. , Peränen J. , Schreiner R. , Wieland F. , Kurzchalia T. V. , Simons K. . ( 1995; ). VIP21/caveolin is a cholesterol-binding protein. . Proc Natl Acad Sci U S A 92:, 10339–10343. [CrossRef] [PubMed]
    [Google Scholar]
  15. Nayak D. P. , Balogun R. A. , Yamada H. , Zhou Z. H. , Barman S. . ( 2009; ). Influenza virus morphogenesis and budding. . Virus Res 143:, 147–161. [CrossRef] [PubMed]
    [Google Scholar]
  16. Nguyen P. A. , Soto C. S. , Polishchuk A. , Caputo G. A. , Tatko C. D. , Ma C. , Ohigashi Y. , Pinto L. H. , DeGrado W. F. , Howard K. P. . ( 2008; ). pH-induced conformational change of the influenza M2 protein C-terminal domain. . Biochemistry 47:, 9934–9936. [CrossRef] [PubMed]
    [Google Scholar]
  17. Rossman J. S. , Lamb R. A. . ( 2011; ). Influenza virus assembly and budding. . Virology 411:, 229–236. [CrossRef] [PubMed]
    [Google Scholar]
  18. Rossman J. S. , Jing X. , Leser G. P. , Balannik V. , Pinto L. H. , Lamb R. A. . ( 2010a; ). Influenza virus M2 ion channel protein is necessary for filamentous virion formation. . J Virol 84:, 5078–5088. [CrossRef] [PubMed]
    [Google Scholar]
  19. Rossman J. S. , Jing X. , Leser G. P. , Lamb R. A. . ( 2010b; ). Influenza virus M2 protein mediates ESCRT-independent membrane scission. . Cell 142:, 902–913. [CrossRef] [PubMed]
    [Google Scholar]
  20. Scheiffele P. , Roth M. G. , Simons K. . ( 1997; ). Interaction of influenza virus haemagglutinin with sphingolipid–cholesterol membrane domains via its transmembrane domain. . EMBO J 16:, 5501–5508. [CrossRef] [PubMed]
    [Google Scholar]
  21. Schroeder C. . ( 2010; ). Cholesterol-binding viral proteins in virus entry and morphogenesis. . Subcell Biochem 51:, 77–108. [CrossRef] [PubMed]
    [Google Scholar]
  22. Schroeder C. , Heider H. , Möncke-Buchner E. , Lin T. I. . ( 2005; ). The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. . Eur Biophys J 34:, 52–66. [CrossRef] [PubMed]
    [Google Scholar]
  23. Scolari S. , Engel S. , Krebs N. , Plazzo A. P. , De Almeida R. F. , Prieto M. , Veit M. , Herrmann A. . ( 2009; ). Lateral distribution of the transmembrane domain of influenza virus hemagglutinin revealed by time-resolved fluorescence imaging. . J Biol Chem 284:, 15708–15716. [CrossRef] [PubMed]
    [Google Scholar]
  24. Sharma M. , Yi M. , Dong H. , Qin H. , Peterson E. , Busath D. D. , Zhou H.-X. , Cross T. A. . ( 2010; ). Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. . Science 330:, 509–512. [CrossRef] [PubMed]
    [Google Scholar]
  25. Stajich J. E. , Block D. , Boulez K. , Brenner S. E. , Chervitz S. A. , Dagdigian C. , Fuellen G. , Gilbert J. G. , Korf I. . & other authors ( 2002; ). The Bioperl toolkit: Perl modules for the life sciences. . Genome Res 12:, 1611–1618.[CrossRef]
    [Google Scholar]
  26. Stewart S. M. , Pekosz A. . ( 2011; ). Mutations in the membrane proximal region of the influenza A virus M2 protein cytoplasmic tail have modest effects on virus replication. . J Virol 85:, 12179–12187. [CrossRef] [PubMed]
    [Google Scholar]
  27. Stewart S. M. , Wu W.-H. , Lalime E. N. , Pekosz A. . ( 2010; ). The cholesterol recognition/interaction amino acid consensus motif of the influenza A virus M2 protein is not required for virus replication but contributes to virulence. . Virology 405:, 530–538. [CrossRef] [PubMed]
    [Google Scholar]
  28. Sugrue R. J. , Belshe R. B. , Hay A. J. . ( 1990; ). Palmitoylation of the influenza A virus M2 protein. . Virology 179:, 51–56. [CrossRef] [PubMed]
    [Google Scholar]
  29. Takeda M. , Pekosz A. , Shuck K. , Pinto L. H. , Lamb R. A. . ( 2002; ). Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. . J Virol 76:, 1391–1399. [CrossRef] [PubMed]
    [Google Scholar]
  30. Thaa B. , Herrmann A. , Veit M. . ( 2010; ). Intrinsic cytoskeleton-dependent clustering of influenza virus M2 protein with hemagglutinin assessed by FLIM-FRET. . J Virol 84:, 12445–12449. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thaa B. , Levental I. , Herrmann A. , Veit M. . ( 2011; ). Intrinsic membrane association of the cytoplasmic tail of influenza virus M2 protein and lateral membrane sorting regulated by cholesterol binding and palmitoylation. . Biochem J 437:, 389–397. [CrossRef] [PubMed]
    [Google Scholar]
  32. Thompson J. D. , Gibson T. J. , Higgins D. G. . ( 2002;). Multiple sequence alignment using ClustalW and ClustalX. . In Current Protocols in Bioinformatics, chapter 2, pp. 2.3.1–2.3.22. Edited by Baxevanis A. D. , Stein L. D. , Stormo G. D. , Yates J. R. III . . Chichester, UK:: Wiley;.
    [Google Scholar]
  33. Veit M. , Thaa B. . ( 2011; ). Association of influenza virus proteins with membrane rafts. . Adv Virol 2011:, 1–14. [CrossRef]
    [Google Scholar]
  34. Veit M. , Klenk H. D. , Kendal A. , Rott R. . ( 1991; ). The M2 protein of influenza A virus is acylated. . J Gen Virol 72:, 1461–1465. [CrossRef] [PubMed]
    [Google Scholar]
  35. Veit M. , Ponimaskin E. , Schmidt M. F. . ( 2008; ). Analysis of S-acylation of proteins. . Methods Mol Biol 446:, 163–182. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zebedee S. L. , Lamb R. A. . ( 1988; ). Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. . J Virol 62:, 2762–2772.[PubMed]
    [Google Scholar]
  37. Zhang J. , Pekosz A. , Lamb R. A. . ( 2000; ). Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. . J Virol 74:, 4634–4644. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhirnov O. P. , Konakova T. E. , Garten W. , Klenk H. . ( 1999; ). Caspase-dependent N-terminal cleavage of influenza virus nucleocapsid protein in infected cells. . J Virol 73:, 10158–10163.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038554-0
Loading
/content/journal/jgv/10.1099/vir.0.038554-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error