1887

Abstract

The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that – upon passaging in Vero E6 cells – SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001453
2020-06-22
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/10.1099/jgv.0.001453/jgv001453.html?itemId=/content/journal/jgv/10.1099/jgv.0.001453&mimeType=html&fmt=ahah

References

  1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5: 536 544 [CrossRef] [PubMed]
    [Google Scholar]
  2. Li X, Song Y, Wong G, Cui J. Bat origin of a new human coronavirus: there and back again. Sci China Life Sci 2020; 63: 461 462 [CrossRef] [PubMed]
    [Google Scholar]
  3. McIntosh K, Chao RK, Krause HE, Wasil R, Mocega HE et al. Coronavirus infection in acute lower respiratory tract disease of infants. J Infect Dis 1974; 130: 502 507 [CrossRef] [PubMed]
    [Google Scholar]
  4. Pyrc K, Berkhout B, van der Hoek L. Identification of new human coronaviruses. Expert Rev Anti Infect Ther 2007; 5: 245 253 [CrossRef] [PubMed]
    [Google Scholar]
  5. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348: 1953 1966 [CrossRef] [PubMed]
    [Google Scholar]
  6. Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361: 1319 1325 [CrossRef] [PubMed]
    [Google Scholar]
  7. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367: 1814 1820 [CrossRef] [PubMed]
    [Google Scholar]
  8. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 2012; 3: e00473-12 [CrossRef] [PubMed]
    [Google Scholar]
  9. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270 273 [CrossRef] [PubMed]
    [Google Scholar]
  10. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A Novel Coronavirus Emerging in China - Key Questions for Impact Assessment. N Engl J Med 2020; 382: 692 694 [CrossRef] [PubMed]
    [Google Scholar]
  11. Li X, Zai J, Zhao Q, Nie Q, Li Y et al. Evolutionary history, potential intermediate animal host, and cross‐species analyses of SARS‐CoV‐2. J Med Virol 2020; 92: 602 611 [CrossRef] [PubMed]
    [Google Scholar]
  12. Lam TT-Y, Shum MH-H, Zhu H-C, Tong Y-G, Ni X-B et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins . Nature 2020 [CrossRef] [PubMed]
    [Google Scholar]
  13. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26: 450 452 [CrossRef] [PubMed]
    [Google Scholar]
  14. Song H-D, Tu C-C, Zhang G-W, Wang S-Y, Zheng K et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 2005; 102: 2430 2435 [CrossRef] [PubMed]
    [Google Scholar]
  15. Reusken CBEM, Haagmans BL, Müller MA, Gutierrez C, Godeke G-J et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis 2013; 13: 859 866 [CrossRef] [PubMed]
    [Google Scholar]
  16. Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503: 535 538 [CrossRef] [PubMed]
    [Google Scholar]
  17. Menachery VD, Yount BL, Debbink K, Agnihothram S, Gralinski LE et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2015; 21: 1508 1513 [CrossRef] [PubMed]
    [Google Scholar]
  18. Hu B, Zeng L-P, Yang X-L, Ge X-Y, Zhang W et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 2017; 13: e1006698 [CrossRef] [PubMed]
    [Google Scholar]
  19. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17: 181 192 [CrossRef] [PubMed]
    [Google Scholar]
  20. Corman VM, Baldwin HJ, Tateno AF, Zerbinati RM, Annan A et al. Evidence for an ancestral association of human coronavirus 229E with bats. J Virol 2015; 89: 11858 11870 [CrossRef] [PubMed]
    [Google Scholar]
  21. Li W, Hulswit RJG, Kenney SP, Widjaja I, Jung K et al. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc Natl Acad Sci U S A 2018; 115: E5135 E5143 [CrossRef] [PubMed]
    [Google Scholar]
  22. Zhou P, Fan H, Lan T, Yang X-L, Shi W-F et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018; 556: 255 258 [CrossRef] [PubMed]
    [Google Scholar]
  23. Nga PT, del Carmen Parquet M, Lauber C, Parida M, Nabeshima T et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog 2011; 7: e1002215 [CrossRef] [PubMed]
    [Google Scholar]
  24. Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res 2016; 96: 59 126 [CrossRef] [PubMed]
    [Google Scholar]
  25. Snijder EJ, Limpens RWAL, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC et al. A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis. PLoS Biol 2020; 18: e3000715 [CrossRef] [PubMed]
    [Google Scholar]
  26. Narayanan K, Huang C, Makino S. Sars coronavirus accessory proteins. Virus Res 2008; 133: 113 121 [CrossRef] [PubMed]
    [Google Scholar]
  27. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19: 149 150 [CrossRef] [PubMed]
    [Google Scholar]
  28. Ogando NS, Ferron F, Decroly E, Canard B, Posthuma CC et al. The curious case of the nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity. Front Microbiol 2019; 10: 1813 [CrossRef] [PubMed]
    [Google Scholar]
  29. Lu R, Zhao X, Li J, Niu P, Yang B et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395: 565 574 [CrossRef] [PubMed]
    [Google Scholar]
  30. Wu F, Zhao S, Yu B, Chen Y-M, Wang W et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579: 265 269 [CrossRef] [PubMed]
    [Google Scholar]
  31. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271 280 [CrossRef]
    [Google Scholar]
  32. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003; 331: 991 1004 [CrossRef] [PubMed]
    [Google Scholar]
  33. Thiel V, Ivanov KA, Putics Ákos, Hertzig T, Schelle B et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 2003; 84: 2305 2315 [CrossRef] [PubMed]
    [Google Scholar]
  34. Caly L, Druce J, Roberts J, Bond K, Tran T, Kostecki R et al. Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med J Aust 2020; 212: 459 462 [CrossRef] [PubMed]
    [Google Scholar]
  35. de Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, van Nieuwkoop S et al. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. J Gen Virol 2013; 94: 1749 1760 [CrossRef] [PubMed]
    [Google Scholar]
  36. Drosten C, Günther S, Preiser W, van der Werf S, Brodt H-R et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348: 1967 1976 [CrossRef] [PubMed]
    [Google Scholar]
  37. van den Worm SHE, Eriksson KK, Zevenhoven JC, Weber F, Züst R et al. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination. PLoS One 2012; 7: e32857 [CrossRef] [PubMed]
    [Google Scholar]
  38. Wu F, Zhao S, Yu B, Chen Y-M, Wang W et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579: 265 269 [CrossRef]
    [Google Scholar]
  39. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9: 357 359 [CrossRef] [PubMed]
    [Google Scholar]
  40. Snijder EJ, Wassenaar AL, Spaan WJ. Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J Virol 1994; 68: 5755 5764 [CrossRef] [PubMed]
    [Google Scholar]
  41. Fang Y, Pekosz A, Haynes L, Nelson EA, Rowland RRR. Production and characterization of monoclonal antibodies against the nucleocapsid protein of SARS-CoV. Adv Exp Med Biol 2006; 581: 153 156 [CrossRef] [PubMed]
    [Google Scholar]
  42. Schönborn J, Oberstrass J, Breyel E, Tittgen J, Schumacher J et al. Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts. Nucleic Acids Res 1991; 19: 2993 3000 [CrossRef] [PubMed]
    [Google Scholar]
  43. van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR et al. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol 1999; 73: 7641 7657 [CrossRef] [PubMed]
    [Google Scholar]
  44. Coelmont L, Kaptein S, Paeshuyse J, Vliegen I, Dumont J-M et al. Debio 025, a cyclophilin binding molecule, is highly efficient in clearing hepatitis C virus (HCV) replicon-containing cells when used alone or in combination with specifically targeted antiviral therapy for HCV (STAT-C) inhibitors. Antimicrob Agents Chemother 2009; 53: 967 976 [CrossRef] [PubMed]
    [Google Scholar]
  45. Stertz S, Reichelt M, Spiegel M, Kuri T, Martínez-Sobrido L et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virology 2007; 361: 304 315 [CrossRef] [PubMed]
    [Google Scholar]
  46. Knoops K, Kikkert M, Worm SHEvanden, Zevenhoven-Dobbe JC, van der Meer Y et al. Sars-Coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 2008; 6: e226 [CrossRef] [PubMed]
    [Google Scholar]
  47. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. Double-Stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 2006; 80: 5059 5064 [CrossRef] [PubMed]
    [Google Scholar]
  48. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJM, van der Meulen J et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 2006; 80: 5927 5940 [CrossRef] [PubMed]
    [Google Scholar]
  49. Maier HJ, Hawes PC, Cottam EM, Mantell J, Verkade P et al. Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes. mBio 2013; 4: e00801 00813 [CrossRef] [PubMed]
    [Google Scholar]
  50. Doyle N, Hawes PC, Simpson J, Adams LH, Maier HJ. The porcine deltacoronavirus replication organelle comprises Double-Membrane vesicles and Zippered endoplasmic reticulum with Double-Membrane spherules. Viruses 2019; 11: 1030 [CrossRef] [PubMed]
    [Google Scholar]
  51. Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol 1984; 33: 281 293 [PubMed]
    [Google Scholar]
  52. Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA et al. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis 2004; 10: 320 326 [CrossRef] [PubMed]
    [Google Scholar]
  53. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP et al. Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018; 9: e00221-18 [CrossRef] [PubMed]
    [Google Scholar]
  54. Wang M, Cao R, Zhang L, Yang X, Liu J et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269 271 [CrossRef] [PubMed]
    [Google Scholar]
  55. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004; 323: 264 268 [CrossRef] [PubMed]
    [Google Scholar]
  56. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2: 69 [CrossRef] [PubMed]
    [Google Scholar]
  57. Carbajo-Lozoya J, Ma-Lauer Y, Malešević M, Theuerkorn M, Kahlert V et al. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Res 2014; 184: 44 53 [CrossRef] [PubMed]
    [Google Scholar]
  58. de Wilde AH, Falzarano D, Zevenhoven-Dobbe JC, Beugeling C, Fett C et al. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Res 2017; 228: 7 13 [CrossRef] [PubMed]
    [Google Scholar]
  59. Haagmans BL, Kuiken T, Martina BE, Fouchier RAM, Rimmelzwaan GF et al. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 2004; 10: 290 293 [CrossRef] [PubMed]
    [Google Scholar]
  60. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA et al. Cell Viability Assays. In Sittampalam GS, Grossman A, Brimacombe K, Arkin M, Auld D et al. (editors) Assay Guidance Manual Bethesda (MD: 2004
    [Google Scholar]
  61. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176: 104742 [CrossRef] [PubMed]
    [Google Scholar]
  62. Izaguirre G. The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses 2019; 11: 837 [CrossRef] [PubMed]
    [Google Scholar]
  63. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270 273 [CrossRef]
    [Google Scholar]
  64. Millet JK, Whittaker GR. Host cell entry of middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 2014; 111: 15214 15219 [CrossRef] [PubMed]
    [Google Scholar]
  65. Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology 2006; 350: 358 369 [CrossRef] [PubMed]
    [Google Scholar]
  66. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181: 281 292 [CrossRef] [PubMed]
    [Google Scholar]
  67. Bosch BJ, Bartelink W, Rottier PJM. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J Virol 2008; 82: 8887 8890 [CrossRef] [PubMed]
    [Google Scholar]
  68. Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ et al. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 2014; 10: e1004502 [CrossRef] [PubMed]
    [Google Scholar]
  69. Huang I-C, Bosch BJ, Li F, Li W, Lee KH et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 2006; 281: 3198 3203 [CrossRef] [PubMed]
    [Google Scholar]
  70. Liu Z, Zheng H, Yuan R, Li M, Lin H et al. Identification of a common deletion in the spike protein of SARS-CoV-2. bioRxiv 2020
    [Google Scholar]
  71. Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike glycoprotein that removes the furin-like cleavage site. bioRxiv 2020
    [Google Scholar]
  72. Goebel SJ, Miller TB, Bennett CJ, Bernard KA, Masters PS. A hypervariable region within the 3' cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. J Virol 2007; 81: 1274 1287 [CrossRef] [PubMed]
    [Google Scholar]
  73. Stammler SN, Cao S, Chen S-J, Giedroc DP. A conserved RNA pseudoknot in a putative molecular switch domain of the 3'-untranslated region of coronaviruses is only marginally stable. RNA 2011; 17: 1747 1759 [CrossRef] [PubMed]
    [Google Scholar]
  74. Rangan R, Zheludev IN, Das R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses. bioRxiv 2020 2020.03.27.012906 06 Apr 2020 [CrossRef] [PubMed]
    [Google Scholar]
  75. Choy K-T, Wong AY-L, Kaewpreedee P, Sia SF, Chen D et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 2020; 178: 104786 [CrossRef] [PubMed]
    [Google Scholar]
  76. Lokugamage KG, Schindewolf C, Menachery VD. SARS-CoV-2 sensitive to type I interferon pretreatment. bioRxiv 2020
    [Google Scholar]
  77. Banerjee A, Nasir JA, Budylowski P, Yip L, Aftanas P et al. Isolation, sequence, infectivity and replication kinetics of SARS-CoV-2. bioRxiv 2020
    [Google Scholar]
  78. Matsuyama S, Nao N, Shirato K, Kawase M, Saito S et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 2020; 117: 7001 7003 [CrossRef] [PubMed]
    [Google Scholar]
  79. Tseng C-TK, Tseng J, Perrone L, Worthy M, Popov V et al. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J Virol 2005; 79: 9470 9479 [CrossRef] [PubMed]
    [Google Scholar]
  80. Mossel EC, Huang C, Narayanan K, Makino S, Tesh RB et al. Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol 2005; 79: 3846 3850 [CrossRef] [PubMed]
    [Google Scholar]
  81. Kaye M. SARS-Associated coronavirus replication in cell lines. Emerg Infect Dis 2006; 12: 128 133 [CrossRef] [PubMed]
    [Google Scholar]
  82. Gillim-Ross L, Taylor J, Scholl DR, Ridenour J, Masters PS et al. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J Clin Microbiol 2004; 42: 3196 3206 [CrossRef] [PubMed]
    [Google Scholar]
  83. De Clercq E, Stewart WE, De Somer P. Studies on the mechanism of the priming effect of interferon on interferon production by cell cultures exposed to poly(rI)-poly(rC). Infect Immun 1973; 8: 309 316 [CrossRef] [PubMed]
    [Google Scholar]
  84. Emeny JM, Morgan MJ. Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol 1979; 43: 247 252 [CrossRef] [PubMed]
    [Google Scholar]
  85. Zhu N, Zhang D, Wang W, Li X, Yang B et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382: 727 733 [CrossRef] [PubMed]
    [Google Scholar]
  86. Rothan HA, Stone S, Natekar J, Kumari P, Arora K et al. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology 2020; 547: 7 11 [CrossRef] [PubMed]
    [Google Scholar]
  87. Tan Y-J, Fielding BC, Goh P-Y, Shen S, Tan THP et al. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol 2004; 78: 14043 14047 [CrossRef] [PubMed]
    [Google Scholar]
  88. Yuan X, Wu J, Shan Y, Yao Z, Dong B et al. Sars coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology 2006; 346: 74 85 [CrossRef] [PubMed]
    [Google Scholar]
  89. Schaecher SR, Mackenzie JM, Pekosz A. The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. J Virol 2007; 81: 718 731 [CrossRef] [PubMed]
    [Google Scholar]
  90. Pfefferle S, Schöpf J, Kögl M, Friedel CC, Müller MA et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 2011; 7: e1002331 [CrossRef] [PubMed]
    [Google Scholar]
  91. Sung S-C, Chao C-Y, Jeng K-S, Yang J-Y, Lai MMC. The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6. Virology 2009; 387: 402 413 [CrossRef] [PubMed]
    [Google Scholar]
  92. Shi C-S, Nabar NR, Huang N-N, Kehrl JH. SARS-Coronavirus open reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019; 5: 101 [CrossRef] [PubMed]
    [Google Scholar]
  93. Chinese SARS Molecular Epidemiology Consortium Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 2004; 303: 1666 1669 [CrossRef] [PubMed]
    [Google Scholar]
  94. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003; 302: 276 278 [CrossRef] [PubMed]
    [Google Scholar]
  95. Lau SKP, Feng Y, Chen H, Luk HKH, Yang W-H et al. Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-Related coronavirus from greater horseshoe bats through recombination. J Virol 2015; 89: 10532 10547 [CrossRef] [PubMed]
    [Google Scholar]
  96. Muth D, Corman VM, Roth H, Binger T, Dijkman R et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep 2018; 8: 15177 [CrossRef] [PubMed]
    [Google Scholar]
  97. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin 2020; 85: [CrossRef] [PubMed]
    [Google Scholar]
  98. Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9: 221 236 [CrossRef] [PubMed]
    [Google Scholar]
  99. Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ et al. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep 2013; 3: 1686 [CrossRef] [PubMed]
    [Google Scholar]
  100. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from middle East respiratory syndrome coronavirus. J Biol Chem 2020; 295: 4773 4779 [CrossRef] [PubMed]
    [Google Scholar]
  101. Yin W, Mao C, Luan X, Shen D-D, Shen Q et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020 eabc1560 [CrossRef] [PubMed]
    [Google Scholar]
  102. Shannon A, Le NT-T, Selisko B, Eydoux C, Alvarez K et al. Remdesivir and SARS-CoV-2: structural requirements at both nsp12 RdRP and nsp14 exonuclease active-sites. Antiviral Res 2020; 178: 104793 [CrossRef] [PubMed]
    [Google Scholar]
  103. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382: 929 936 [CrossRef] [PubMed]
    [Google Scholar]
  104. Kim AHJ, Sparks JA, Liew JW, Putman MS, Berenbaum F et al. A rush to judgment? rapid reporting and dissemination of results and its consequences regarding the use of hydroxychloroquine for COVID-19. Ann Intern Med 2020
    [Google Scholar]
  105. Yao X, Ye F, Zhang M, Cui C, Huang B et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 10: [CrossRef]
    [Google Scholar]
  106. Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis 2001; 184: 770 776 [CrossRef] [PubMed]
    [Google Scholar]
  107. Al-Bari MAA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 2015; 70: 1608 1621 [CrossRef] [PubMed]
    [Google Scholar]
  108. de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology 2018; 522: 46 55 [CrossRef] [PubMed]
    [Google Scholar]
  109. van Hemert MJ, van den Worm SHE, Knoops K, Mommaas AM, Gorbalenya AE et al. Sars-Coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 2008; 4: e1000054 [CrossRef] [PubMed]
    [Google Scholar]
  110. Sawicki SG, Sawicki DL. Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 1995; 380: 499 506 [CrossRef] [PubMed]
    [Google Scholar]
  111. Xu J, Hu J, Wang J, Han Y, Hu Y et al. Genome organization of the SARS-CoV. Genomics Proteomics Bioinformatics 2003; 1: 226 235 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001453
Loading
/content/journal/jgv/10.1099/jgv.0.001453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error