-
Volume 91,
Issue 6,
2010
Volume 91, Issue 6, 2010
- Review
-
-
-
How RNA viruses maintain their genome integrity
More LessRNA genomes are vulnerable to corruption by a range of activities, including inaccurate replication by the error-prone replicase, damage from environmental factors, and attack by nucleases and other RNA-modifying enzymes that comprise the cellular intrinsic or innate immune response. Damage to coding regions and loss of critical cis-acting signals inevitably impair genome fitness; as a consequence, RNA viruses have evolved a variety of mechanisms to protect their genome integrity. These include mechanisms to promote replicase fidelity, recombination activities that allow exchange of sequences between different RNA templates, and mechanisms to repair the genome termini. In this article, we review examples of these processes from a range of RNA viruses to showcase the diverse approaches that viruses have evolved to maintain their genome sequence integrity, focusing first on mechanisms that viruses use to protect their entire genome, and then concentrating on mechanisms that allow protection of the genome termini, which are especially vulnerable. In addition, we discuss examples in which it might be beneficial for a virus to ‘lose’ its genomic termini and reduce its replication efficiency.
-
-
- Animal
-
- RNA viruses
-
-
Hepatitis C virus genotype-3a core protein enhances sterol regulatory element-binding protein-1 activity through the phosphoinositide 3-kinase–Akt-2 pathway
Hepatitis C virus genotype-3a (HCV-3a) is directly linked to the development of steatosis. We previously showed that, through sterol regulatory element binding protein-1 (SREBP-1), HCV-3a core protein upregulates the promoter activity of fatty acid synthase, a major enzyme involved in de novo lipid synthesis. In this study, we investigated whether HCV-3a core can activate SREBP-1 and studied the role of phosphoinositide 3-kinase (PI3K)–Akt-2 pathway in modulating SREBP-1 activity by HCV-3a core. To determine whether HCV-3a core could activate SREBP-1, the level of mature SREBP-1 was analysed by Western blotting. Our results showed that the level of mature SREBP-1 was enhanced by HCV-3a core protein after transient expression and in the chimeric HCV-3a core/1b replicon cells in comparison to controls. To investigate the role of the PI3K–Akt-2 pathway in SREBP-1 activation by HCV-3a core, PI3K and Akt-2 activity was inhibited by using the chemical inhibitor LY294002, a dominant-negative Akt-2 plasmid, or knockdown of Akt-2 by small hairpin RNA. Our results showed that inhibition of PI3K and Akt-2 was associated with reduced SREBP-1 activation by HCV-3a core. These results indicate a role for PI3K and Akt-2 in increasing SREBP-1 activity by HCV-3a core protein and provide a mechanism of steatosis caused by HCV.
-
-
-
Virological footprint of CD4+ T-cell responses during chronic hepatitis C virus infection
More LessHuman and animal model evidence suggests that CD4+ T cells play a critical role in the control of chronic hepatitis C virus (HCV) infection. However, despite their importance, the mechanism behind the failure of such populations in chronic disease is not understood and the contribution of viral mutation is not known. To address this, this study defined the specificity and virological footprint of CD4+ T cells in chronic infection. CD8+ T-cell-depleted peripheral blood mononuclear cells from 61 HCV genotype 1-infected patients were analysed against a panel of peptides covering the HCV genotype 1 core – a region where CD4+ T-cell responses may be reproducibly obtained. In parallel, the core region and E2 protein were sequenced. Gamma interferon-secreting CD4+ T-cell responses directed against multiple epitopes were detected in 53 % of individuals, targeting between one and four peptides in the HCV core. Viral sequence evaluation revealed that these CD4+ T-cell responses were associated with mutants in 2/21 individuals. In these two cases, the circulating sequence variant was poorly recognized by host CD4+ T cells. Bioinformatics analyses revealed no overall evidence of selection in the target epitopes and no differences between the groups with and without detectable CD4+ T-cell responses. It was concluded that sustained core peptide-specific CD4+ T-cell responses may be reproducibly measured during chronic HCV infection and that immune escape may occur in specific instances. However, overall the virological impact of such responses is limited and other causes for CD4+ T-cell failure in HCV must be sought.
-
-
-
An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses
Advax is a polysaccharide-based adjuvant that potently stimulates vaccine immunogenicity without the increased reactogenicity seen with other adjuvants. This study investigated the immunogenicity of a novel Advax-adjuvanted Vero cell culture candidate vaccine against Japanese encephalitis virus (JEV) in mice and horses. The results showed that, in mice, a two-immunization, low-dose (50 ng JEV antigen) regimen with adjuvanted vaccine produced solid neutralizing immunity comparable to that elicited with live ChimeriVax-JE immunization and superior to that elicited with tenfold higher doses of a traditional non-adjuvanted JEV vaccine (JE-VAX; Biken Institute) or a newly approved alum-adjuvanted vaccine (Jespect; Novartis). Mice vaccinated with the Advax-adjuvanted, but not the unadjuvanted vaccine, were protected against live JEV challenge. Equine immunizations against JEV with Advax-formulated vaccine similarly showed enhanced vaccine immunogenicity, confirming that the adjuvant effects of Advax are not restricted to rodent models. Advax-adjuvanted JEV vaccine elicited a balanced T-helper 1 (Th1)/Th2 immune response against JEV with protective levels of cross-neutralizing antibody against other viruses belonging to the JEV serocomplex, including Murray Valley encephalitis virus (MVEV). The adjuvanted JEV vaccine was well tolerated with minimal reactogenicity and no systemic toxicity in immunized animals. The cessation of manufacture of traditional mouse brain-derived unadjuvanted JEV vaccine in Japan has resulted in a JEV vaccine shortage internationally. There is also an ongoing lack of human vaccines against other JEV serocomplex flaviviruses, such as MVEV, making this adjuvanted, cell culture-grown JEV vaccine a promising candidate to address both needs with one vaccine.
-
-
-
Genomic features and evolutionary constraints in Saffold-like cardioviruses
This study identified the complete genomic sequence of four type 2 and type 3 human Saffold-like cardioviruses (SLCVs) isolated in Germany and Brazil. The secondary structures of the SLCV internal ribosome entry sites (IRESs) were deduced based on RNA base-pairing conservation and co-variation, using an established Theiler's murine encephalomyelitis virus (TMEV) IRES structure as a reference. The SLCV IRES was highly similar to that of TMEV, but motifs critical in TMEV for binding of the polypyrimidine tract-binding protein (PTB) were disrupted. In TMEV, corresponding alterations have been associated with reduced neurovirulence in mice. In the non-structural genome region, there was evidence of multiple intertypic recombination events between different SLCV types. Between viruses of the same type, recombination also occurred in the capsid-encoding genome region. There were apparently no recombination events between mouse TMEV and human SLCV. In another genus of the family Picornaviridae, Enterovirus, natural recombination occurs strictly within species and can serve as an additional criterion for delimiting species. Accordingly, the results of this study suggest that SLCV and TMEV may represent distinct species within the genus Cardiovirus.
-
-
-
Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway
More LessFor many viruses, endocytosis and exposure to the low pH within acidic endosomes is essential for infection. It has previously been reported that feline calicivirus uses clathrin-mediated endocytosis for entry into mammalian cells. Here, we report that infection of RAW264.7 macrophages by the closely related murine norovirus-1 (MNV-1) does not require the clathrin pathway, as infection was not inhibited by expression of dominant-negative Eps15 or by knockdown of the adaptin-2 complex. Further, infection was not inhibited by reagents that raise endosomal pH. RAW264.7 macrophages were shown not to express caveolin, and flotillin depletion did not inhibit infection, suggesting that caveolae and the flotillin pathway are not required for cell entry. However, MNV-1 infection was inhibited by methyl-β-cyclodextrin and the dynamin inhibitor, dynasore. Addition of these drugs to the cells after a period of virus internalization did not inhibit infection, suggesting the involvement of cholesterol-sensitive lipid rafts and dynamin in the entry mechanism. Macropinocytosis (MPC) was shown to be active in RAW264.7 macrophages (as indicated by uptake of dextran) and could be blocked by 5-(N-ethyl-N-isopropyl) amiloride (EIPA), which is reported to inhibit this pathway. However, infection was enhanced in the presence of EIPA. Similarly, actin disruption, which also inhibits MPC, resulted in enhanced infection. These results suggest that MPC could contribute to virus degradation or that inhibition of MPC could lead to the upregulation of other endocytic pathways of virus uptake.
-
-
-
The PI3K/Akt pathway inhibits influenza A virus-induced Bax-mediated apoptosis by negatively regulating the JNK pathway via ASK1
More LessIt has previously been reported that influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. In addition, it has been shown that the mutant influenza A virus PR8-SH3-mf-1, which is unable to activate the PI3K/Akt pathway, is more pro-apoptotic than the wild-type (WT) virus. However, the molecular pathways involved in regulating this process remain unknown. Here, it is reported that, although both WT and PR8-SH3-mf-1 viruses induced apoptosis, the PR8-SH3-mf-1 virus consistently showed greater potential to induce mitochondrial membrane disruption, cytochrome c release, and translocation and conformational change of Bax than the WT virus. Furthermore, the PR8-SH3-mf-1 virus was unable to phosphorylate apoptosis signal-regulating kinase 1 (ASK1) but induced higher levels of c-jun N-terminal kinase (JNK) phosphorylation than the WT virus. Blocking JNK activity could inhibit virus-induced Bax activation and apoptosis. These results reveal that, during influenza A virus infection, the PI3K/Akt pathway negatively regulates the JNK pathway via ASK1, thereby inhibiting JNK-dependent, Bax-mediated apoptosis.
-
-
-
Effect of inactivation method on the cross-protective immunity induced by whole ‘killed’ influenza A viruses and commercial vaccine preparations
We have recently shown that intranasal (i.n.) administration of γ-irradiated A/PR/8 [A/Puerto Rico/8/34 (H1N1)] protects mice against lethal avian influenza A/Vietnam/1203/2004 (H5N1) and other heterosubtypic influenza A infections. Here, we used γ-irradiated, formalin- and UV-inactivated A/PC [A/Port Chalmers/1/73 (H3N2)] virus preparations and compared their ability to induce both homologous and heterosubtypic protective immunity. Our data show that, in contrast to i.n. vaccination with formalin- or UV-inactivated virus, or the present commercially available trivalent influenza vaccine, a single dose of γ-ray-inactivated A/PC (γ-A/PC) conferred significant protection in mice against both homologous and heterosubtypic virus challenges. A multiple immunization regime was required for formalin-inactivated virus preparations to induce protective immunity against a homotypic virus challenge, but did not induce influenza A strain cross-protective immunity. The highly immunogenic γ-A/PC, but not formalin- or UV-inactivated A/PC, nor the currently available subvirion vaccine, elicited cytotoxic T-cell responses that are most likely responsible for the cross-protective and long-lasting immunity against highly lethal influenza A infections in mice. Finally, freeze-drying of γ-A/PC did not affect the ability to induce cross-protective immunity.
-
-
-
A mutation in H5 haemagglutinin that conferred human receptor recognition is not maintained stably during duck passage
More LessA/Hong Kong/213/97 (HK213; H5N1), isolated from a human, binds to both avian- and human-type receptors, due to a haemagglutinin (HA) mutation probably acquired during adaptation to humans. Duck passage of this virus conferred lethality in ducks. Sequence analyses of the duck-passaged virus revealed that its HA gene reverted back to one recognizing only avian-type receptors, and consequently it bound human tissue to a lesser extent. This finding suggests that viruses with human-type receptor specificity are unlikely to be maintained in waterfowl, unlike those with the human-type PB2 mutation, such as H5N1 viruses of the Qinghai Lake lineage.
-
-
-
Measles virus M protein-driven particle production does not involve the endosomal sorting complex required for transport (ESCRT) system
Assembly and budding of enveloped RNA viruses rely on viral matrix (M) proteins and host proteins involved in sorting and vesiculation of cellular cargoes, such as the endosomal sorting complex required for transport (ESCRT). The measles virus (MV) M protein promotes virus-like particle (VLP) production, and we now show that it shares association with detergent-resistant or tetraspanin-enriched membrane microdomains with ebolavirus VP40 protein, yet accumulates less efficiently at the plasma membrane. Unlike VP40, which recruits ESCRT components via its N-terminal late (L) domain and exploits them for particle production, the M protein does this independently of this pathway, as (i) ablation of motifs bearing similarity to canonical L domains did not affect VLP production, (ii) it did not redistribute Tsg101, AIP-1 or Vps4A to the plasma membrane, and (iii) neither VLP nor infectious virus production was sensitive to inhibition by dominant-negative Vps4A. Importantly, transfer of the VP40 L domain into the MV M protein did not cause recruitment of ESCRT proteins or confer sensitivity of VLP release to Vps4A, indicating that MV particle production occurs independently of and cannot be routed into an ESCRT-dependent pathway.
-
-
-
Crimean–Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice
Crimean–Congo hemorrhagic fever virus (CCHFV) poses a great threat to public health due to its high mortality, transmission and geographical distribution. To date, there is no vaccine or specific treatment available and the knowledge regarding its pathogenesis is highly limited. Using a small-animal model system, this study showed that adult mice missing the type I interferon (IFN) receptor (IFNAR−/−) were susceptible to CCHFV and developed an acute disease with fatal outcome. In contrast, infection of wild-type mice (129 Sv/Ew) was asymptomatic. Viral RNA was found in all analysed organs of the infected mice, but the amount of CCHFV RNA was significantly higher in the IFNAR−/− mice than in the wild-type mice. Furthermore, the liver of IFNAR−/− mice was enlarged significantly, showing that IFN is important for limiting virus spread and protecting against liver damage in mice.
-
-
-
Characterization of the Ebola virus nucleoprotein–RNA complex
More LessWhen Ebola virus nucleoprotein (NP) is expressed in mammalian cells, it assembles into helical structures. Here, the recombinant NP helix purified from cells expressing NP was characterized biochemically and morphologically. We found that the recombinant NP helix is associated with non-viral RNA, which is not protected from RNase digestion and that the morphology of the helix changes depending on the environmental salt concentration. The N-terminal 450 aa residues of NP are sufficient for these properties. However, digestion of the NP-associated RNA eliminates the plasticity of the helix, suggesting that this RNA is an essential structural component of the helix, binding to individual NP molecules via the N-terminal 450 aa. These findings enhance our knowledge of Ebola virus assembly and understanding of the Ebola virus life cycle.
-
-
-
Incongruent fitness landscapes, not tradeoffs, dominate the adaptation of vesicular stomatitis virus to novel host types
More LessHost radiation refers to the ability of parasites to adapt to new environments and expand or change their niches. Adaptation to one specific environment may involve a loss in adaptation to a second environment. Thus, fitness costs may impose limits to niche expansion and constitute the cost of specialization. Several reports have addressed the cost of host radiation in vesicular stomatitis virus (VSV), but in some cases the experimental setup may have resulted in the overestimation of fitness costs. To clarify this issue, experiments were carried out in which a reference strain of VSV was allowed to adapt to HeLa, MDCK and BHK-21 cells, and to a regime of alternation between HeLa and Madin–Darby canine kidney (MDCK) cells. Measurement of viral fitness on each cell type showed that most virus populations behaved as generalists, and increased in fitness in all environments. Tradeoffs, where a fitness increase in one environment led to a fitness decrease in another environment, were rare. These results highlight the importance of using appropriate methods to measure fitness in evolved virus populations, and provide further support to a model of evolutionary dynamics in which costs due to incongruent landscapes provided by different environments are more common than tradeoffs.
-
-
-
Human endogenous retrovirus protein Rec interacts with the testicular zinc-finger protein and androgen receptor
More than 2000 human endogenous retrovirus (HERV) sequences are present in the human genome, yet only a few are intact and able to produce proteins. The normal functions of these, if any, are unknown, but some HERV proteins have been implicated in cancers, in particular germ-cell cancers. For instance, it has been documented that (i) patients with germ-cell tumours frequently produce antibodies against HERV proteins; (ii) transgenic mice expressing HERV-K (HML-2) rec are prone to testicular carcinoma in situ; and (iii) Rec can bind and suppress a guardian of germline stem-cell pluripotency, the promyelocytic leukaemia zinc-finger protein (PLZF). This study identified the PLZF-related testicular zinc-finger protein (TZFP) as a binding partner of HERV-K (HML-2) Rec. Interactions occurred via the N- and C-terminal domains of Rec and the C-terminal DNA-binding zinc-finger domain of TZFP (aa 375–450). Not much is known about the function of TZFP. The protein is expressed predominantly in the testis, where it functions as a transcriptional repressor that is active during specific stages of spermatogenesis. The most intensely studied function of TZFP is that of a co-repressor of the activated androgen receptor (AR). Here, it was shown that Rec can form a trimeric complex with TZFP and AR, and can relieve the TZFP-mediated repression of AR-induced transactivation. In addition, Rec was able to overcome the direct transcriptional repression by TZFP of the c-myc gene promoter in reporter assays. Thus, HERV-K (HML-2) Rec may function as an oncoprotein by de-repressing oncogenic transcription factors such as AR.
-
-
-
A novel role for the viral Rev protein in promoting resistance to superinfection by human immunodeficiency virus type 1
More LessAt the cellular level, cells infected with human immunodeficiency virus type 1 (HIV-1) exhibit immunity to a second infection by the virus that initiated the first infection or by related viruses [superinfection resistance (SIR)]. In the case of HIV infection, SIR was basically attributed to downregulation of the CD4 receptors. We have recently reported on an interaction between HIV-1 Rev and integrase (IN) proteins, which results in inhibition of IN activity in vitro and integration of cDNA in HIV-1-infected cells. A novel function for the viral Rev protein in controlling integration of HIV cDNAs was thus proposed. The results of the present work suggest involvement of the inhibitory Rev in sustaining SIR. A single exposure to wild-type HIV-1 resulted in one to two integrations per cell. The number of integrated proviral cDNA copies remained at this low level even after double infection or superinfection. SIR was dependent on Rev expression by the strain used for the first infection and was eliminated by peptides that disrupt intracellular complex formation between IN and Rev. The same lack of resistance was observed in the absence of Rev, namely following first infection with a ΔRev HIV strain. The involvement of Rev, expressed from either unintegrated or integrated viral cDNA, in promoting SIR was clearly demonstrated. We conclude that SIR involves Rev-dependent control of HIV cDNA integration.
-
-
-
Subcellular localization and live-cell imaging of the Helicoverpa armigera stunt virus replicase in mammalian and Spodoptera frugiperda cells
More LessWhilst their structure has been well studied, there is little information on the replication biology of tetraviruses because of the lack of suitable tissue-culture cell lines that support virus replication. In this study, the potential site of Helicoverpa armigera stunt virus replication was investigated by transient expression of the replicase protein fused to enhanced green fluorescent protein (EGFP) in mammalian and insect cells. When EGFP was present at the C terminus of the protein, fluorescence was located in punctate cytoplasmic structures that were distinct from the peripheral Golgi, endoplasmic reticulum, early endosomes, lysosomes and mitochondria, but overlapped partially with late endosomes. In experiments where targeting to endosomal compartments was examined further by using Cascade Blue–dextran in live cells, no overlap between the replicase and active endocytic organelles was apparent. Analysis of the punctate structures using time-lapse imaging in live cells revealed that they undergo fusion, fission and ‘kiss-and-run’ events. Whilst the source of the membranes used to form the punctate structures remains unclear, we propose that the replicase sequesters membranes from the late endosomes and actively excludes host proteins, either by normal recycling processes or by a replicase-dependent mechanism that may result in the destabilization of the associated membranes and a release of luminal contents into the cytosol. This is the first study describing the localization of a tetravirus.
-
- DNA viruses
-
-
A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum
Gene m164 of murine cytomegalovirus belongs to the large group of ‘private’ genes that show no homology to those of other cytomegalovirus species and are thought to represent ‘host adaptation’ genes involved in virus–host interaction. Previous interest in the m164 gene product was based on the presence of an immunodominant CD8 T-cell epitope presented at the surface of infected cells, despite interference by viral immune-evasion proteins. Here, we provide data to reveal that the m164 gene product shows unusual features in its cell biology. A novel strategy of mass-spectrometric analysis was employed to map the N terminus of the mature protein, 107 aa downstream of the start site of the predicted open reading frame. The resulting 36.5 kDa m164 gene product is identified here as an integral type-I membrane glycoprotein with exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane with an outstandingly high lateral membrane motility, actually 100 times higher than those published for cellular ER-resident proteins. Notably, gp36.5/m164 does not contain any typical ER-retention/retrieval signals, such as the C-terminal motifs KKXX or KXKXX, and does not pass the Golgi apparatus. Instead, it belongs to the rare group of viral glycoproteins in which the transmembrane domain (TMD) itself mediates direct ER retention. This is the first report relating TMD usage of an ER-resident transmembrane protein to its lateral membrane motility as a paradigm in cell biology. We propose that TMD usage for ER retention facilitates free and fast floating in ER-related membranes and between ER subdomains.
-
-
-
Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture
Mutations that occurred during adaptation of human cytomegalovirus to cell culture were monitored by isolating four strains from clinical samples, passaging them in various cell types and sequencing ten complete virus genomes from the final passages. Mutational dynamics were assessed by targeted sequencing of intermediate passages and the original clinical samples. Gene RL13 and the UL128 locus (UL128L, consisting of genes UL128, UL130 and UL131A) mutated in all strains. Mutations in RL13 occurred in fibroblast, epithelial and endothelial cells, whereas those in UL128L were limited to fibroblasts and detected later than those in RL13. In addition, a region containing genes UL145, UL144, UL142, UL141 and UL140 mutated in three strains. All strains exhibited numerous mutations in other regions of the genome, with a preponderance in parts of the inverted repeats. An investigation was carried out on the kinetic growth yields of viruses derived from selected passages that were predominantly non-mutated in RL13 and UL128L (RL13+UL128L+), or that were largely mutated in RL13 (RL13−UL128L+) or both RL13 and UL128L (RL13−UL128L−). RL13−UL128L− viruses produced greater yields of infectious progeny than RL13−UL128L+ viruses, and RL13−UL128L+ viruses produced greater yields than RL13+UL128L+ viruses. These results suggest strongly that RL13 and UL128L exert at least partially independent suppressive effects on growth in fibroblasts. As all isolates proved genetically unstable in all cell types tested, caution is advised in choosing and monitoring strains for experimental studies of vulnerable functions, particularly those involved in cell tropism, immune evasion or growth temperance.
-
-
-
Regulation of the subcellular distribution of key cellular RNA-processing factors during permissive human cytomegalovirus infection
More LessAlternative splicing and polyadenylation of human cytomegalovirus (HCMV) immediate-early (IE) pre-mRNAs are temporally regulated and rely on cellular RNA-processing factors. This study examined the location and abundance of essential RNA-processing factors, which affect alternative processing of UL37 IE pre-mRNAs, during HCMV infection. Serine/threonine protein kinase 1 (SRPK1) phosphorylates serine/arginine-rich proteins, necessary for pre-spliceosome commitment. It was found that HCMV infection progressively increased the abundance of cytoplasmic SRPK1, which is regulated by subcellular partitioning. The essential polyadenylation factor CstF-64 was similarly increased in abundance, albeit in the nucleus, proximal to and within viral replication compartments (VRCs). In contrast, the location of polypyrimidine tract-binding protein (PTB), known to adversely affect splicing of HCMV major IE RNAs, was temporally regulated during infection. PTB co-localized with CstF-64 in the nucleus at IE times. By early times, PTB was detected in punctate cytoplasmic sites of some infected cells. At late times, PTB relocalized to the nucleus, where it was notably excluded from HCMV VRCs. Moreover, HCMV infection induced the formation of nucleolar stress structures, fibrillarin-containing caps, in close proximity to its VRCs. PTB exclusion from HCMV VRCs required HCMV DNA synthesis and/or late gene expression, whereas the regulation of SRPK1 subcellular distribution did not. Taken together, these results indicated that HCMV increasingly regulates the subcellular distribution and abundance of essential RNA-processing factors, thereby altering their ability to affect the processing of viral pre-mRNAs. These results further suggest that HCMV infection selectively induces sorting of nucleolar and nucleoplasmic components.
-
-
-
The genome of pseudocowpoxvirus: comparison of a reindeer isolate and a reference strain
Parapoxviruses (PPV), of the family Poxviridae, cause a pustular cutaneous disease in sheep and goats (orf virus, ORFV) and cattle (pseudocowpoxvirus, PCPV and bovine papular stomatitis virus, BPSV). Here, we present the first genomic sequence of a reference strain of PCPV (VR634) along with the genomic sequence of a PPV (F00.120R) isolated in Finland from reindeer (Rangifer tarandus tarandus). The F00.120R and VR634 genomes are 135 and 145 kb in length and contain 131 and 134 putative genes, respectively, with their genome organization being similar to that of other PPVs. The predicted proteins of F00.120R and VR634 have an average amino acid sequence identity of over 95 %, whereas they share only 88 and 73 % amino acid identity with the ORFV and BPSV proteomes, respectively. The most notable differences were found near the genome termini. F00.120R lacks six and VR634 lacks three genes seen near the right terminus of other PPVs. Four genes at the left end of F00.120R and one in the middle of both genomes appear to be fragmented paralogues of other genes within the genome. VR634 has larger than expected inverted terminal repeats possibly as a result of genomic rearrangements. The high G+C content (64 %) of these two viruses along with amino acid sequence comparisons and whole genome phylogenetic analyses confirm the classification of PCPV as a separate species within the genus Parapoxvirus and verify that the virus responsible for an outbreak of contagious stomatitis in reindeer over the winter of 1999–2000 can be classified as PCPV.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
