Assembly and budding of enveloped RNA viruses rely on viral matrix (M) proteins and host proteins involved in sorting and vesiculation of cellular cargoes, such as the endosomal sorting complex required for transport (ESCRT). The measles virus (MV) M protein promotes virus-like particle (VLP) production, and we now show that it shares association with detergent-resistant or tetraspanin-enriched membrane microdomains with ebolavirus VP40 protein, yet accumulates less efficiently at the plasma membrane. Unlike VP40, which recruits ESCRT components via its N-terminal late (L) domain and exploits them for particle production, the M protein does this independently of this pathway, as (i) ablation of motifs bearing similarity to canonical L domains did not affect VLP production, (ii) it did not redistribute Tsg101, AIP-1 or Vps4A to the plasma membrane, and (iii) neither VLP nor infectious virus production was sensitive to inhibition by dominant-negative Vps4A. Importantly, transfer of the VP40 L domain into the MV M protein did not cause recruitment of ESCRT proteins or confer sensitivity of VLP release to Vps4A, indicating that MV particle production occurs independently of and cannot be routed into an ESCRT-dependent pathway.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bavari, S., Bosio, C. M., Wiegand, E., Ruthel, G., Will, A. B., Geisbert, T. W., Hevey, M., Schmaljohn, C., Schmaljohn, A. & Aman, M. J.(2002). Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195, 593–602.[CrossRef] [Google Scholar]
  2. Bieniasz, P. D.(2009). The cell biology of HIV-1 virion genesis. Cell Host Microbe 5, 550–558.[CrossRef] [Google Scholar]
  3. Cathomen, T., Mrkic, B., Spehner, D., Drillien, R., Naef, R., Pavlovic, J., Aguzzi, A., Billeter, M. A. & Cattaneo, R.(1998a). A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17, 3899–3908.[CrossRef] [Google Scholar]
  4. Cathomen, T., Naim, H. Y. & Cattaneo, R.(1998b). Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 72, 1224–1234. [Google Scholar]
  5. Cattaneo, R., Schmid, A., Rebmann, G., Baczko, K., Ter Meulen, V., Bellini, W. J., Rozenblatt, S. & Billeter, M. A.(1986). Accumulated measles virus mutations in a case of subacute sclerosing panencephalitis: interrupted matrix protein reading frame and transcription alteration. Virology 154, 97–107.[CrossRef] [Google Scholar]
  6. Chazal, N. & Gerlier, D.(2003). Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67, 226–237.[CrossRef] [Google Scholar]
  7. Chen, B. J. & Lamb, R. A.(2008). Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 372, 221–232.[CrossRef] [Google Scholar]
  8. Ciancanelli, M. J. & Basler, C. F.(2006). Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80, 12070–12078.[CrossRef] [Google Scholar]
  9. Crump, C. M., Yates, C. & Minson, T.(2007). Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 81, 7380–7387.[CrossRef] [Google Scholar]
  10. Demirov, D. G. & Freed, E. O.(2004). Retrovirus budding. Virus Res 106, 87–102.[CrossRef] [Google Scholar]
  11. Deneka, M., Pelchen-Matthews, A., Byland, R., Ruiz-Mateos, E. & Marsh, M.(2007). In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 177, 329–341.[CrossRef] [Google Scholar]
  12. Dolnik, O., Kolesnikova, L. & Becker, S.(2008). Filoviruses: interactions with the host cell. Cell Mol Life Sci 65, 756–776.[CrossRef] [Google Scholar]
  13. Dong, X., Li, H., Derdowski, A., Ding, L., Burnett, A., Chen, X., Peters, T. R., Dermody, T. S., Woodruff, E. & other authors(2005). AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 120, 663–674.[CrossRef] [Google Scholar]
  14. Gomis-Ruth, F. X., Dessen, A., Timmins, J., Bracher, A., Kolesnikowa, L., Becker, S., Klenk, H. D. & Weissenhorn, W.(2003). The matrix protein VP40 from Ebola virus octamerizes into pore-like structures with specific RNA binding properties. Structure 11, 423–433.[CrossRef] [Google Scholar]
  15. Hartlieb, B. & Weissenhorn, W.(2006). Filovirus assembly and budding. Virology 344, 64–70.[CrossRef] [Google Scholar]
  16. Hemler, M. E.(2005). Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6, 801–811.[CrossRef] [Google Scholar]
  17. Imhoff, H., von Messling, V., Herrler, G. & Haas, L.(2007). Canine distemper virus infection requires cholesterol in the viral envelope. J Virol 81, 4158–4165.[CrossRef] [Google Scholar]
  18. Irie, T., Licata, J. M., McGettigan, J. P., Schnell, M. J. & Harty, R. N.(2004). Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A. J Virol 78, 2657–2665.[CrossRef] [Google Scholar]
  19. Irie, T., Licata, J. M. & Harty, R. N.(2005). Functional characterization of Ebola virus L-domains using VSV recombinants. Virology 336, 291–298.[CrossRef] [Google Scholar]
  20. Iwasaki, M., Takeda, M., Shirogane, Y., Nakatsu, Y., Nakamura, T. & Yanagi, Y.(2009). The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 83, 10374–10383.[CrossRef] [Google Scholar]
  21. Khurana, S., Krementsov, D. N., de Parseval, A., Elder, J. H., Foti, M. & Thali, M.(2007). Human immunodeficiency virus type 1 and influenza virus exit via different membrane microdomains. J Virol 81, 12630–12640.[CrossRef] [Google Scholar]
  22. Kolesnikova, L., Bugany, H., Klenk, H. D. & Becker, S.(2002). VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. J Virol 76, 1825–1838.[CrossRef] [Google Scholar]
  23. Kolesnikova, L., Berghofer, B., Bamberg, S. & Becker, S.(2004). Multivesicular bodies as a platform for formation of the Marburg virus envelope. J Virol 78, 12277–12287.[CrossRef] [Google Scholar]
  24. Kolesnikova, L., Ryabchikova, E., Shestopalov, A. & Becker, S.(2007). Basolateral budding of Marburg virus: VP40 retargets viral glycoprotein GP to the basolateral surface. J Infect Dis 196 (Suppl. 2), S232–S236.[CrossRef] [Google Scholar]
  25. Kolesnikova, L., Strecker, T., Morita, E., Zielecki, F., Mittler, E., Crump, C. & Becker, S.(2009). Vacuolar protein sorting pathway contributes to the release of Marburg virus. J Virol 83, 2327–2337.[CrossRef] [Google Scholar]
  26. Li, M., Schmitt, P. T., Li, Z., McCrory, T. S., He, B. & Schmitt, A. P.(2009). Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol 83, 7261–7272.[CrossRef] [Google Scholar]
  27. Licata, J. M., Simpson-Holley, M., Wright, N. T., Han, Z., Paragas, J. & Harty, R. N.(2003). Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J Virol 77, 1812–1819.[CrossRef] [Google Scholar]
  28. Manie, S. N., de Breyne, S., Vincent, S. & Gerlier, D.(2000). Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 74, 305–311.[CrossRef] [Google Scholar]
  29. Moll, M., Klenk, H. D., Herrler, G. & Maisner, A.(2001). A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin–Darby canine kidney cells. J Biol Chem 276, 17887–17894.[CrossRef] [Google Scholar]
  30. Moll, M., Klenk, H. D. & Maisner, A.(2002). Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol 76, 7174–7186.[CrossRef] [Google Scholar]
  31. Naim, H. Y., Ehler, E. & Billeter, M. A.(2000). Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells. EMBO J 19, 3576–3585.[CrossRef] [Google Scholar]
  32. Nydegger, S., Khurana, S., Krementsov, D. N., Foti, M. & Thali, M.(2006). Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 173, 795–807.[CrossRef] [Google Scholar]
  33. Panchal, R. G., Ruthel, G., Kenny, T. A., Kallstrom, G. H., Lane, D., Badie, S. S., Li, L., Bavari, S. & Aman, M. J.(2003).In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc Natl Acad Sci U S A 100, 15936–15941.[CrossRef] [Google Scholar]
  34. Pohl, C., Duprex, W. P., Krohne, G., Rima, B. K. & Schneider-Schaulies, S.(2007). Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. J Gen Virol 88, 1243–1250.[CrossRef] [Google Scholar]
  35. Raiborg, C. & Stenmark, H.(2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452.[CrossRef] [Google Scholar]
  36. Reuter, T., Weissbrich, B., Schneider-Schaulies, S. & Schneider-Schaulies, J.(2006). RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 80, 5951–5957.[CrossRef] [Google Scholar]
  37. Robinzon, S., Dafa-Berger, A., Dyer, M. D., Paeper, B., Proll, S. C., Teal, T. H., Rom, S., Fishman, D., Rager-Zisman, B. & Katze, M. G.(2009). Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with measles virus. J Virol 83, 5495–5504.[CrossRef] [Google Scholar]
  38. Ruiz-Mateos, E., Pelchen-Matthews, A., Deneka, M. & Marsh, M.(2008). CD63 is not required for production of infectious human immunodeficiency virus type 1 in human macrophages. J Virol 82, 4751–4761.[CrossRef] [Google Scholar]
  39. Runkler, N., Pohl, C., Schneider-Schaulies, S., Klenk, H. D. & Maisner, A.(2007). Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9, 1203–1214.[CrossRef] [Google Scholar]
  40. Schmitt, A. P. & Lamb, R. A.(2004). Escaping from the cell: assembly and budding of negative-strand RNA viruses. Curr Top Microbiol Immunol 283, 145–196. [Google Scholar]
  41. Schmitt, A. P., Leser, G. P., Morita, E., Sundquist, W. I. & Lamb, R. A.(2005). Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J Virol 79, 2988–2997.[CrossRef] [Google Scholar]
  42. Silvestri, L. S., Ruthel, G., Kallstrom, G., Warfield, K. L., Swenson, D. L., Nelle, T., Iversen, P. L., Bavari, S. & Aman, M. J.(2007). Involvement of vacuolar protein sorting pathway in Ebola virus release independent of TSG101 interaction. J Infect Dis 196 (Suppl. 2), S264–S270.[CrossRef] [Google Scholar]
  43. Suryanarayana, K., Baczko, K., ter Meulen, V. & Wagner, R. R.(1994). Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol 68, 1532–1543. [Google Scholar]
  44. Tahara, M., Takeda, M. & Yanagi, Y.(2007). Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell–cell fusion. J Virol 81, 6827–6836.[CrossRef] [Google Scholar]
  45. Timmins, J., Scianimanico, S., Schoehn, G. & Weissenhorn, W.(2001). Vesicular release of Ebola virus matrix protein VP40. Virology 283, 1–6.[CrossRef] [Google Scholar]
  46. Usami, Y., Popov, S., Popova, E., Inoue, M., Weissenhorn, W. & Göttlinger, H. G.(2009). The ESCRT pathway and HIV-1 budding. Biochem Soc Trans 37, 181–184.[CrossRef] [Google Scholar]
  47. Vincent, S., Gerlier, D. & Manie, S. N.(2000). Measles virus assembly within membrane rafts. J Virol 74, 9911–9915.[CrossRef] [Google Scholar]
  48. Welsch, S., Muller, B. & Krausslich, H. G.(2007). More than one door – budding of enveloped viruses through cellular membranes. FEBS Lett 581, 2089–2097.[CrossRef] [Google Scholar]
  49. Wild, T. F. & Buckland, R.(1995). Functional aspects of envelope-associated measles virus proteins. Curr Top Microbiol Immunol 191, 51–64. [Google Scholar]

Data & Media loading...


Primers used for site-directed mutagenesis of pCG-M(ED) [ PDF] (61 KB)


HeLa cells were cotransfected to express VP40 (red) and Vps4 (left panel) or Vps4 E/Q (right panel) (both Vps4 constructs carried a YFP tag and appear in green). Bars, 10 µm (left); 5 µm (right). [ PDF] (3 MB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error