1887

Abstract

Human and animal model evidence suggests that CD4 T cells play a critical role in the control of chronic hepatitis C virus (HCV) infection. However, despite their importance, the mechanism behind the failure of such populations in chronic disease is not understood and the contribution of viral mutation is not known. To address this, this study defined the specificity and virological footprint of CD4 T cells in chronic infection. CD8 T-cell-depleted peripheral blood mononuclear cells from 61 HCV genotype 1-infected patients were analysed against a panel of peptides covering the HCV genotype 1 core – a region where CD4 T-cell responses may be reproducibly obtained. In parallel, the core region and E2 protein were sequenced. Gamma interferon-secreting CD4 T-cell responses directed against multiple epitopes were detected in 53 % of individuals, targeting between one and four peptides in the HCV core. Viral sequence evaluation revealed that these CD4 T-cell responses were associated with mutants in 2/21 individuals. In these two cases, the circulating sequence variant was poorly recognized by host CD4 T cells. Bioinformatics analyses revealed no overall evidence of selection in the target epitopes and no differences between the groups with and without detectable CD4 T-cell responses. It was concluded that sustained core peptide-specific CD4 T-cell responses may be reproducibly measured during chronic HCV infection and that immune escape may occur in specific instances. However, overall the virological impact of such responses is limited and other causes for CD4 T-cell failure in HCV must be sought.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017699-0
2010-06-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/6/1396.html?itemId=/content/journal/jgv/10.1099/vir.0.017699-0&mimeType=html&fmt=ahah

References

  1. Alter, M. J. ( 2007; ). Epidemiology of hepatitis C virus infection. World J Gastroenterol 13, 2436–2441.[CrossRef]
    [Google Scholar]
  2. Barnes, E., Harcourt, G., Brown, D., Lucas, M., Phillips, R., Dusheiko, G. & Klenerman, P. ( 2002; ). The dynamics of T-lymphocyte responses during combination therapy for chronic hepatitis C virus infection. Hepatology 36, 743–754.[CrossRef]
    [Google Scholar]
  3. Besnard, N. C. & Andre, P. M. ( 1994; ). Automated quantitative determination of hepatitis C virus viremia by reverse transcription-PCR. J Clin Microbiol 32, 1887–1893.
    [Google Scholar]
  4. Bowen, D. G. & Walker, C. M. ( 2005a; ). Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436, 946–952.[CrossRef]
    [Google Scholar]
  5. Bowen, D. G. & Walker, C. M. ( 2005b; ). Mutational escape from CD8+ T cell immunity: HCV evolution, from chimpanzees to man. J Exp Med 201, 1709–1714.[CrossRef]
    [Google Scholar]
  6. Ciurea, A., Hunziker, L., Martinic, M. M., Oxenius, A., Hengartner, H. & Zinkernagel, R. M. ( 2001; ). CD4+ T-cell-epitope escape mutant virus selected in vivo. Nat Med 7, 795–800.[CrossRef]
    [Google Scholar]
  7. Combet, C., Garnier, N., Charavay, C., Grando, D., Crisan, D., Lopez, J., Dehne-Garcia, A., Geourjon, C., Bettler, E. & other authors ( 2007; ). euHCVdb: the European hepatitis C virus database. Nucleic Acids Res 35, D363–D366.[CrossRef]
    [Google Scholar]
  8. Corbet, S., Bukh, J., Heinsen, A. & Fomsgaard, A. ( 2003; ). Hepatitis C virus subtyping by a core–envelope 1-based reverse transcriptase PCR assay with sequencing and its use in determining subtype distribution among Danish patients. J Clin Microbiol 41, 1091–1100.[CrossRef]
    [Google Scholar]
  9. Cox, A. L., Mosbruger, T., Lauer, G. M., Pardoll, D., Thomas, D. L. & Ray, S. C. ( 2005a; ). Comprehensive analyses of CD8+ T cell responses during longitudinal study of acute human hepatitis C. Hepatology 42, 104–112.
    [Google Scholar]
  10. Cox, A. L., Mosbruger, T., Mao, Q., Liu, Z., Wang, X. H., Yang, H. C., Sidney, J., Sette, A., Pardoll, D. & other authors ( 2005b; ). Cellular immune selection with hepatitis C virus persistence in humans. J Exp Med 201, 1741–1752.[CrossRef]
    [Google Scholar]
  11. Day, C. L. & Walker, B. D. ( 2003; ). Progress in defining CD4 helper cell responses in chronic viral infections. J Exp Med 198, 1773–1777.[CrossRef]
    [Google Scholar]
  12. Day, C. L., Seth, N. P., Lucas, M., Appel, H., Gauthier, L., Lauer, G. M., Robbins, G. K., Szczepiorkowski, Z. M., Casson, D. R. & other authors ( 2003; ). Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J Clin Invest 112, 831–842.[CrossRef]
    [Google Scholar]
  13. Dazert, E., Neumann-Haefelin, C., Bressanelli, S., Fitzmaurice, K., Kort, J., Timm, J., McKiernan, S., Kelleher, D., Gruener, N. & other authors ( 2009; ). Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response. J Clin Invest 119, 376–386.
    [Google Scholar]
  14. Diepolder, H. M., Zachoval, R., Hoffmann, R. M., Wierenga, E. A., Santantonio, T., Jung, M. C., Eichenlaub, D. & Pape, G. R. ( 1995; ). Possible mechanism involving T-lymphocyte response to non-structural protein 3 in viral clearance in acute hepatitis C virus infection. Lancet 346, 1006–1007.[CrossRef]
    [Google Scholar]
  15. Eckels, D. D., Zhou, H., Bian, T. H. & Wang, H. ( 1999; ). Identification of antigenic escape variants in an immunodominant epitope of hepatitis C virus. Int Immunol 11, 577–583.[CrossRef]
    [Google Scholar]
  16. Eckels, D. D., Wang, H., Bian, T. H., Tabatabai, N. & Gill, J. C. ( 2000; ). Immunobiology of hepatitis C virus (HCV) infection: the role of CD4 T cells in HCV infection. Immunol Rev 174, 90–97.[CrossRef]
    [Google Scholar]
  17. Erickson, A. L., Kimura, Y., Igarashi, S., Eichelberger, J., Houghton, M., Sidney, J., McKinney, D., Sette, A., Hughes, A. L. & Walker, C. M. ( 2001; ). The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity 15, 883–895.[CrossRef]
    [Google Scholar]
  18. Fuller, M. J., Bowen, D. G., Rutkiewicz, J. M., Shoukry, N. H., Hughes, A. L. & Walker, C. M. ( 2008; ). CD4 T cells do not exert selective pressure to promote persistent HCV infection. In 15th International Symposium on Hepatitis C Virus and Related Viruses, 5–9 October 2008, San Antonio, Texas, USA, p. 48.
  19. Gerlach, J. T., Ulsenheimer, A., Gruner, N. H., Jung, M. C., Schraut, W., Schirren, C. A., Heeg, M., Scholz, S., Witter, K. & other authors ( 2005; ). Minimal T-cell-stimulatory sequences and spectrum of HLA restriction of immunodominant CD4+ T-cell epitopes within hepatitis C virus NS3 and NS4 proteins. J Virol 79, 12425–12433.[CrossRef]
    [Google Scholar]
  20. Grakoui, A., Shoukry, N. H., Woollard, D. J., Han, J. H., Hanson, H. L., Ghrayeb, J., Murthy, K. K., Rice, C. M. & Walker, C. M. ( 2003; ). HCV persistence and immune evasion in the absence of memory T cell help. Science 302, 659–662.[CrossRef]
    [Google Scholar]
  21. Harcourt, G. C., Lucas, M., Godkin, A. J., Kantzanou, M., Phillips, R. E. & Klenerman, P. ( 2003; ). Evidence for lack of cross-genotype protection of CD4+ T cell responses during chronic hepatitis C virus infection. Clin Exp Immunol 131, 122–129.[CrossRef]
    [Google Scholar]
  22. Harcourt, G., Gomperts, E., Donfield, S. & Klenerman, P. ( 2006; ). Diminished frequency of hepatitis C virus specific interferon gamma secreting CD4+ T cells in human immunodeficiency virus/hepatitis C virus coinfected patients. Gut 55, 1484–1487.[CrossRef]
    [Google Scholar]
  23. Hraber, P. T., Leach, R. W., Reilly, L. P., Thurmond, J., Yusim, K. & Kuiken, C. ( 2007; ). Los Alamos hepatitis C virus sequence and human immunology databases: an expanding resource for antiviral research. Antivir Chem Chemother 18, 113–123.[CrossRef]
    [Google Scholar]
  24. Kiepiela, P., Ngumbela, K., Thobakgale, C., Ramduth, D., Honeyborne, I., Moodley, E., Reddy, S., de Pierres, C., Mncube, Z. & other authors ( 2007; ). CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 13, 46–53.[CrossRef]
    [Google Scholar]
  25. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  26. Klenerman, P. & Hill, A. ( 2005; ). T cells and viral persistence: lessons from diverse infections. Nat Immunol 6, 873–879.[CrossRef]
    [Google Scholar]
  27. Komatsu, H., Lauer, G., Pybus, O. G., Ouchi, K., Wong, D., Ward, S., Walker, B. & Klenerman, P. ( 2006; ). Do antiviral CD8+ T cells select hepatitis C virus escape mutants? Analysis in diverse epitopes targeted by human intrahepatic CD8+ T lymphocytes. J Viral Hepat 13, 121–130.[CrossRef]
    [Google Scholar]
  28. Komurian-Pradel, F., Paranhos-Baccala, G., Sodoyer, M., Chevallier, P., Mandrand, B., Lotteau, V. & Andre, P. ( 2001; ). Quantitation of HCV RNA using real-time PCR and fluorimetry. J Virol Methods 95, 111–119.[CrossRef]
    [Google Scholar]
  29. Kosakovsky Pond, S. L. & Frost, S. D. W. ( 2005a; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533.[CrossRef]
    [Google Scholar]
  30. Kosakovsky Pond, S. L. & Frost, S. D. W. ( 2005b; ). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22, 1208–1222.[CrossRef]
    [Google Scholar]
  31. Lamonaca, V., Missale, G., Urbani, S., Pilli, M., Boni, C., Mori, C., Sette, A., Massari, M., Southwood, S. & other authors ( 1999; ). Conserved hepatitis C virus sequences are highly immunogenic for CD4+ T cells: implications for vaccine development. Hepatology 30, 1088–1098.[CrossRef]
    [Google Scholar]
  32. Lauer, G. M., Barnes, E., Lucas, M., Timm, J., Ouchi, K., Kim, A. Y., Day, C. L., Robbins, G. K., Casson, D. R. & other authors ( 2004; ). High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology 127, 924–936.[CrossRef]
    [Google Scholar]
  33. Lechner, F., Wong, D. K., Dunbar, P. R., Chapman, R., Chung, R. T., Dohrenwend, P., Robbins, G., Phillips, R., Klenerman, P. & Walker, B. D. ( 2000; ). Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med 191, 1499–1512.[CrossRef]
    [Google Scholar]
  34. Liu, Z., Netski, D. M., Mao, Q., Laeyendecker, O., Ticehurst, J. R., Wang, X. H., Thomas, D. L. & Ray, S. C. ( 2004; ). Accurate representation of the hepatitis C virus quasispecies in 5.2-kilobase amplicons. J Clin Microbiol 42, 4223–4229.[CrossRef]
    [Google Scholar]
  35. Löhr, H. F., Schlaak, J. F., Kollmannsperger, S., Dienes, H. P., Meyer zum Büschenfelde, K. H. & Gerken, G. ( 1996; ). Liver-infiltrating and circulating CD4+ T cells in chronic hepatitis C: immunodominant epitopes, HLA-restriction and functional significance. Liver 16, 174–182.
    [Google Scholar]
  36. Lucas, M., Ulsenheimer, A., Pfafferot, K., Heeg, M. H., Gaudieri, S., Gruner, N., Rauch, A., Gerlach, J. T., Jung, M. C. & other authors ( 2007; ). Tracking virus-specific CD4+ T cells during and after acute hepatitis C virus infection. PLoS One 2, e649 [CrossRef]
    [Google Scholar]
  37. MacDonald, A. J., Duffy, M., Brady, M. T., McKiernan, S., Hall, W., Hegarty, J., Curry, M. & Mills, K. H. ( 2002; ). CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. J Infect Dis 185, 720–727.[CrossRef]
    [Google Scholar]
  38. McKiernan, S. M., Hagan, R., Curry, M., McDonald, G. S., Kelly, A., Nolan, N., Walsh, A., Hegarty, J., Lawlor, E. & Kelleher, D. ( 2004; ). Distinct MHC class I and II alleles are associated with hepatitis C viral clearance, originating from a single source. Hepatology 40, 108–114.
    [Google Scholar]
  39. Missale, G., Bertoni, R., Lamonaca, V., Valli, A., Massari, M., Mori, C., Rumi, M. G., Houghton, M., Fiaccadori, F. & Ferrari, C. ( 1996; ). Different clinical behaviors of acute hepatitis C virus infection are associated with different vigor of the anti-viral cell-mediated immune response. J Clin Invest 98, 706–714.[CrossRef]
    [Google Scholar]
  40. Neumann-Haefelin, C., McKiernan, S., Ward, S., Viazov, S., Spangenberg, H. C., Killinger, T., Baumert, T. F., Nazarova, N., Sheridan, I. & other authors ( 2006; ). Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology 43, 563–572.[CrossRef]
    [Google Scholar]
  41. Penna, A., Missale, G., Lamonaca, V., Pilli, M., Mori, C., Zanelli, P., Cavalli, A., Elia, G. & Ferrari, C. ( 2002; ). Intrahepatic and circulating HLA class II-restricted, hepatitis C virus-specific T cells: functional characterization in patients with chronic hepatitis C. Hepatology 35, 1225–1236.[CrossRef]
    [Google Scholar]
  42. Puig, M., Mihalik, K., Tilton, J. C., Williams, O., Merchlinsky, M., Connors, M., Feinstone, S. M. & Major, M. E. ( 2006; ). CD4+ immune escape and subsequent T-cell failure following chimpanzee immunization against hepatitis C virus. Hepatology 44, 736–745.[CrossRef]
    [Google Scholar]
  43. Rambaut, A. (2007). Sequence alignment editor (version 2.0). University of Edinburgh, UK. Distributed by the author. http://tree.bio.ed.ac.uk/software/seal/.
  44. Ray, S. C., Fanning, L., Wang, X. H., Netski, D. M., Kenny-Walsh, E. & Thomas, D. L. ( 2005; ). Divergent and convergent evolution after a common-source outbreak of hepatitis C virus. J Exp Med 201, 1753–1759.[CrossRef]
    [Google Scholar]
  45. Rehermann, B., Chang, K. M., McHutchison, J. G., Kokka, R., Houghton, M. & Chisari, F. V. ( 1996; ). Quantitative analysis of the peripheral blood cytotoxic T lymphocyte response in patients with chronic hepatitis C virus infection. J Clin Invest 98, 1432–1440.[CrossRef]
    [Google Scholar]
  46. Ruys, T. A., Nanlohy, N. M., van den Berg, C. H., Hassink, E., Beld, M., van de Laar, T., Bruisten, S., Wit, F., Krol, A. & other authors ( 2008; ). HCV-specific T-cell responses in injecting drug users: evidence for previous exposure to HCV and a role for CD4+ T cells focussing on nonstructural proteins in viral clearance. J Viral Hepat 15, 409–420.[CrossRef]
    [Google Scholar]
  47. Schirren, C. A., Jung, M. C., Gerlach, J. T., Worzfeld, T., Baretton, G., Mamin, M., Hubert Gruener, N., Houghton, M. & Pape, G. R. ( 2000; ). Liver-derived hepatitis C virus (HCV)-specific CD4+ T cells recognize multiple HCV epitopes and produce interferon gamma. Hepatology 32, 597–603.[CrossRef]
    [Google Scholar]
  48. Schulze Zur Wiesch, J., Lauer, G. M., Timm, J., Kuntzen, T., Neukamm, M., Berical, A., Jones, A. M., Nolan, B. E., Longworth, S. A. & other authors ( 2007; ). Immunologic evidence for lack of heterologous protection following resolution of HCV in patients with non-genotype 1 infection. Blood 110, 1559–1569.[CrossRef]
    [Google Scholar]
  49. Semmo, N., Day, C. L., Ward, S. M., Lucas, M., Harcourt, G., Loughry, A. & Klenerman, P. ( 2005; ). Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology 41, 1019–1028.[CrossRef]
    [Google Scholar]
  50. Semmo, N., Krashias, G., Willberg, C. & Klenerman, P. ( 2007; ). Analysis of the relationship between cytokine secretion and proliferative capacity in hepatitis C virus infection. J Viral Hepat 14, 492–502.[CrossRef]
    [Google Scholar]
  51. Shavinskaya, A., Boulant, S., Penin, F., McLauchlan, J. & Bartenschlager, R. ( 2007; ). The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J Biol Chem 282, 37158–37169.[CrossRef]
    [Google Scholar]
  52. Shoukry, N. H., Grakoui, A., Houghton, M., Chien, D. Y., Ghrayeb, J., Reimann, K. A. & Walker, C. M. ( 2003; ). Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J Exp Med 197, 1645–1655.[CrossRef]
    [Google Scholar]
  53. Timm, J., Li, B., Daniels, M. G., Bhattacharya, T., Reyor, L. L., Allgaier, R., Kuntzen, T., Fischer, W., Nolan, B. E. & other authors ( 2007; ). Human leukocyte antigen-associated sequence polymorphisms in hepatitis C virus reveal reproducible immune responses and constraints on viral evolution. Hepatology 46, 339–349.[CrossRef]
    [Google Scholar]
  54. Wang, H. & Eckels, D. D. ( 1999; ). Mutations in immunodominant T cell epitopes derived from the nonstructural 3 protein of hepatitis C virus have the potential for generating escape variants that may have important consequences for T cell recognition. J Immunol 162, 4177–4183.
    [Google Scholar]
  55. Wang, J. H., Layden, T. J. & Eckels, D. D. ( 2003; ). Modulation of the peripheral T-cell response by CD4 mutants of hepatitis C virus: transition from a Th1 to a Th2 response. Hum Immunol 64, 662–673.[CrossRef]
    [Google Scholar]
  56. Weiner, A., Erickson, A. L., Kansopon, J., Crawford, K., Muchmore, E., Hughes, A. L., Houghton, M. & Walker, C. M. ( 1995; ). Persistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant. Proc Natl Acad Sci U S A 92, 2755–2759.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017699-0
Loading
/content/journal/jgv/10.1099/vir.0.017699-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1396 –1406

HCV core peptide amino acid sequences [ PDF] (38 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error