1887

Abstract

For many viruses, endocytosis and exposure to the low pH within acidic endosomes is essential for infection. It has previously been reported that feline calicivirus uses clathrin-mediated endocytosis for entry into mammalian cells. Here, we report that infection of RAW264.7 macrophages by the closely related murine norovirus-1 (MNV-1) does not require the clathrin pathway, as infection was not inhibited by expression of dominant-negative Eps15 or by knockdown of the adaptin-2 complex. Further, infection was not inhibited by reagents that raise endosomal pH. RAW264.7 macrophages were shown not to express caveolin, and flotillin depletion did not inhibit infection, suggesting that caveolae and the flotillin pathway are not required for cell entry. However, MNV-1 infection was inhibited by methyl--cyclodextrin and the dynamin inhibitor, dynasore. Addition of these drugs to the cells after a period of virus internalization did not inhibit infection, suggesting the involvement of cholesterol-sensitive lipid rafts and dynamin in the entry mechanism. Macropinocytosis (MPC) was shown to be active in RAW264.7 macrophages (as indicated by uptake of dextran) and could be blocked by 5-(N-ethyl-N-isopropyl) amiloride (EIPA), which is reported to inhibit this pathway. However, infection was enhanced in the presence of EIPA. Similarly, actin disruption, which also inhibits MPC, resulted in enhanced infection. These results suggest that MPC could contribute to virus degradation or that inhibition of MPC could lead to the upregulation of other endocytic pathways of virus uptake.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016717-0
2010-06-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/6/1428.html?itemId=/content/journal/jgv/10.1099/vir.0.016717-0&mimeType=html&fmt=ahah

References

  1. Bailey, D., Thackray, L. B. & Goodfellow, I. G. ( 2008; ). A single amino acid substitution in the murine norovirus capsid protein is sufficient for attenuation in vivo. J Virol 82, 7725–7728.[CrossRef]
    [Google Scholar]
  2. Benmerah, A., Gagnon, J., Begue, B., Megarbane, B., Dautry-Varsat, A. & Cerf-Bensussan, N. ( 1995; ). The tyrosine kinase substrate eps15 is constitutively associated with the plasma membrane adaptor AP-2. J Cell Biol 131, 1831–1838.[CrossRef]
    [Google Scholar]
  3. Benmerah, A., Begue, B., Dautry-Varsat, A. & Cerf-Bensussan, N. ( 1996; ). The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps 15 protein. J Biol Chem 271, 12111–12116.[CrossRef]
    [Google Scholar]
  4. Benmerah, A., Bayrou, M., Cerf-Bensussan, N. & Dautry-Varsat, A. ( 1999; ). Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 112, 1303–1311.
    [Google Scholar]
  5. Berryman, S., Clark, S., Monaghan, P. & Jackson, T. ( 2005; ). Early events in integrin αvβ6-mediated cell entry of foot-and-mouth disease virus. J Virol 79, 8519–8534.[CrossRef]
    [Google Scholar]
  6. Brenner, S. L. & Korn, E. D. ( 1980; ). The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. J Biol Chem 255, 841–844.
    [Google Scholar]
  7. Cameron, P. L., Ruffin, J. W., Bollag, R., Rasmussen, H. & Cameron, R. S. ( 1997; ). Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 17, 9520–9535.
    [Google Scholar]
  8. Chen, H., Fre, S., Slepnev, V. I., Capua, M. R., Takei, K., Butler, M. H., Di Fiore, P. P. & De Camilli, P. ( 1998; ). Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797.[CrossRef]
    [Google Scholar]
  9. Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. ( 1994; ). Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127, 915–934.[CrossRef]
    [Google Scholar]
  10. Damm, E. M., Pelkmans, L., Kartenbeck, J., Mezzacasa, A., Kurzchalia, T. & Helenius, A. ( 2005; ). Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168, 477–488.[CrossRef]
    [Google Scholar]
  11. Dharmawardhane, S., Schurmann, A., Sells, M. A., Chernoff, J., Schmid, S. L. & Bokoch, G. M. ( 2000; ). Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell 11, 3341–3352.[CrossRef]
    [Google Scholar]
  12. D'Hondt, K., Heese-Peck, A. & Riezman, H. ( 2000; ). Protein and lipid requirements for endocytosis. Annu Rev Genet 34, 255–295.[CrossRef]
    [Google Scholar]
  13. Doherty, G. J. & McMahon, H. T. ( 2009; ). Mechanisms of endocytosis. Annu Rev Biochem 78, 857–902.[CrossRef]
    [Google Scholar]
  14. Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. ( 1994; ). Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269, 30745–30748.
    [Google Scholar]
  15. Fujinaga, Y., Wolf, A. A., Rodighiero, C., Wheeler, H., Tsai, B., Allen, L., Jobling, M. G., Rapoport, T., Holmes, R. K. & Lencer, W. I. ( 2003; ). Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulm. Mol Biol Cell 14, 4783–4793.[CrossRef]
    [Google Scholar]
  16. Glebov, O. O., Bright, N. A. & Nichols, B. J. ( 2006; ). Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8, 46–54.[CrossRef]
    [Google Scholar]
  17. Gorodinsky, A. & Harris, D. A. ( 1995; ). Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol 129, 619–627.[CrossRef]
    [Google Scholar]
  18. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. ( 1998; ). Dynamin-mediated internalization of caveolae. J Cell Biol 141, 85–99.[CrossRef]
    [Google Scholar]
  19. Hinrichsen, L., Harborth, J., Andrees, L., Weber, K. & Ungewickell, E. J. ( 2003; ). Effect of clathrin heavy chain- and α-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J Biol Chem 278, 45160–45170.[CrossRef]
    [Google Scholar]
  20. Hsu, C. C., Riley, L. K., Wills, H. M. & Livingston, R. S. ( 2006; ). Persistent infection with and serologic cross-reactivity of three novel murine noroviruses. Comp Med 56, 247–251.
    [Google Scholar]
  21. Huss, M., Ingenhorst, G., Konig, S., Gassel, M., Drose, S., Zeeck, A., Altendorf, K. & Wieczorek, H. ( 2002; ). Concanamycin A, the specific inhibitor of V-ATPases, binds to the Vo subunit c. J Biol Chem 277, 40544–40548.[CrossRef]
    [Google Scholar]
  22. Iannolo, G., Salcini, A. E., Gaidarov, I., Goodman, O. B., Jr, Baulida, J., Carpenter, G., Pelicci, P. G., Di Fiore, P. P. & Keen, J. H. ( 1997; ). Mapping of the molecular determinants involved in the interaction between eps15 and AP-2. Cancer Res 57, 240–245.
    [Google Scholar]
  23. Karst, S. M., Wobus, C. E., Lay, M., Davidson, J. & Virgin, H. W., IV ( 2003; ). STAT1-dependent innate immunity to a Norwalk-like virus. Science 299, 1575–1578.[CrossRef]
    [Google Scholar]
  24. Lang, D. M., Lommel, S., Jung, M., Ankerhold, R., Petrausch, B., Laessing, U., Wiechers, M. F., Plattner, H. & Stuermer, C. A. ( 1998; ). Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol 37, 502–523.[CrossRef]
    [Google Scholar]
  25. Lopman, B. A., Reacher, M., Gallimore, C., Adak, G. K., Gray, J. J. & Brown, D. W. ( 2003; ). A summertime peak of “winter vomiting disease”: surveillance of noroviruses in England and Wales, 1995 to 2002. BMC Public Health 3, 13 [CrossRef]
    [Google Scholar]
  26. Lyden, T. W., Anderson, C. L. & Robinson, J. M. ( 2002; ). The endothelium but not the syncytiotrophoblast of human placenta expresses caveolae. Placenta 23, 640–652.[CrossRef]
    [Google Scholar]
  27. Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C. & Kirchhausen, T. ( 2006; ). Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10, 839–850.[CrossRef]
    [Google Scholar]
  28. Makino, A., Shimojima, M., Miyazawa, T., Kato, K., Tohya, Y. & Akashi, H. ( 2006; ). Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol 80, 4482–4490.[CrossRef]
    [Google Scholar]
  29. Marsh, M. & Helenius, A. ( 2006; ). Virus entry: open sesame. Cell 124, 729–740.[CrossRef]
    [Google Scholar]
  30. Mercer, J. & Helenius, A. ( 2008; ). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535.[CrossRef]
    [Google Scholar]
  31. Mercer, J. & Helenius, A. ( 2009; ). Virus entry by macropinocytosis. Nat Cell Biol 11, 510–520.[CrossRef]
    [Google Scholar]
  32. Miaczynska, M. & Stenmark, H. ( 2008; ). Mechanisms and functions of endocytosis. J Cell Biol 180, 7–11.[CrossRef]
    [Google Scholar]
  33. Mills, I. G. ( 2007; ). The interplay between clathrin-coated vesicles and cell signalling. Semin Cell Dev Biol 18, 459–470.[CrossRef]
    [Google Scholar]
  34. Morrow, I. C. & Parton, R. G. ( 2005; ). Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6, 725–740.[CrossRef]
    [Google Scholar]
  35. Muller, B., Klemm, U., Mas Marques, A. & Schreier, E. ( 2007; ). Genetic diversity and recombination of murine noroviruses in immunocompromised mice. Arch Virol 152, 1709–1719.[CrossRef]
    [Google Scholar]
  36. Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V. & Simons, K. ( 1995; ). VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A 92, 10339–10343.[CrossRef]
    [Google Scholar]
  37. Oh, P., McIntosh, D. P. & Schnitzer, J. E. ( 1998; ). Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141, 101–114.[CrossRef]
    [Google Scholar]
  38. Pelkmans, L., Kartenbeck, J. & Helenius, A. ( 2001; ). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3, 473–483.[CrossRef]
    [Google Scholar]
  39. Pelkmans, L., Puntener, D. & Helenius, A. ( 2002; ). Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539.[CrossRef]
    [Google Scholar]
  40. Perry, J. W., Taube, S. & Wobus, C. E. ( 2009; ). Murine norovirus-1 entry into permissive macrophages and dendritic cells is pH-independent. Virus Res 143, 125–129.[CrossRef]
    [Google Scholar]
  41. Rust, M. J., Lakadamyali, M., Zhang, F. & Zhuang, X. ( 2004; ). Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol 11, 567–573.[CrossRef]
    [Google Scholar]
  42. Smith, A. E., Lilie, H. & Helenius, A. ( 2003; ). Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett 555, 199–203.[CrossRef]
    [Google Scholar]
  43. Sosnovtsev, S. V., Belliot, G., Chang, K. O., Prikhodko, V. G., Thackray, L. B., Wobus, C. E., Karst, S. M., Virgin, H. W. & Green, K. Y. ( 2006; ). Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 80, 7816–7831.[CrossRef]
    [Google Scholar]
  44. Stuart, A. D. & Brown, T. D. ( 2006; ). Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes. J Virol 80, 7500–7509.[CrossRef]
    [Google Scholar]
  45. Stuart, A. D. & Brown, T. D. ( 2007; ). α2,6-Linked sialic acid acts as a receptor for Feline calicivirus. J Gen Virol 88, 177–186.[CrossRef]
    [Google Scholar]
  46. Taube, S., Perry, J. W., Yetming, K., Patel, S. P., Auble, H., Shu, L., Nawar, H. F., Lee, C. H., Connell, T. D. & other authors ( 2009; ). Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J Virol 83, 4092–4101.[CrossRef]
    [Google Scholar]
  47. Thackray, L. B., Wobus, C. E., Chachu, K. A., Liu, B., Alegre, E. R., Henderson, K. S., Kelley, S. T. & Virgin, H. W., IV ( 2007; ). Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81, 10460–10473.[CrossRef]
    [Google Scholar]
  48. Vela, E. M., Zhang, L., Colpitts, T. M., Davey, R. A. & Aronson, J. F. ( 2007; ). Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology 369, 1–11.[CrossRef]
    [Google Scholar]
  49. Vidricaire, G. & Tremblay, M. J. ( 2007; ). A clathrin, caveolae, and dynamin-independent endocytic pathway requiring free membrane cholesterol drives HIV-1 internalization and infection in polarized trophoblastic cells. J Mol Biol 368, 1267–1283.[CrossRef]
    [Google Scholar]
  50. Volonte, D., Galbiati, F., Li, S., Nishiyama, K., Okamoto, T. & Lisanti, M. P. ( 1999; ). Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J Biol Chem 274, 12702–12709.[CrossRef]
    [Google Scholar]
  51. West, M. A., Bretscher, M. S. & Watts, C. ( 1989; ). Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol 109, 2731–2739.[CrossRef]
    [Google Scholar]
  52. Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K. O., Sosnovtsev, S. V., Belliot, G., Krug, A., Mackenzie, J. M., Green, K. Y. & Virgin, H. W. ( 2004; ). Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2, e432 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016717-0
Loading
/content/journal/jgv/10.1099/vir.0.016717-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error