Alternative splicing and polyadenylation of human cytomegalovirus (HCMV) immediate-early (IE) pre-mRNAs are temporally regulated and rely on cellular RNA-processing factors. This study examined the location and abundance of essential RNA-processing factors, which affect alternative processing of UL37 IE pre-mRNAs, during HCMV infection. Serine/threonine protein kinase 1 (SRPK1) phosphorylates serine/arginine-rich proteins, necessary for pre-spliceosome commitment. It was found that HCMV infection progressively increased the abundance of cytoplasmic SRPK1, which is regulated by subcellular partitioning. The essential polyadenylation factor CstF-64 was similarly increased in abundance, albeit in the nucleus, proximal to and within viral replication compartments (VRCs). In contrast, the location of polypyrimidine tract-binding protein (PTB), known to adversely affect splicing of HCMV major IE RNAs, was temporally regulated during infection. PTB co-localized with CstF-64 in the nucleus at IE times. By early times, PTB was detected in punctate cytoplasmic sites of some infected cells. At late times, PTB relocalized to the nucleus, where it was notably excluded from HCMV VRCs. Moreover, HCMV infection induced the formation of nucleolar stress structures, fibrillarin-containing caps, in close proximity to its VRCs. PTB exclusion from HCMV VRCs required HCMV DNA synthesis and/or late gene expression, whereas the regulation of SRPK1 subcellular distribution did not. Taken together, these results indicated that HCMV increasingly regulates the subcellular distribution and abundance of essential RNA-processing factors, thereby altering their ability to affect the processing of viral pre-mRNAs. These results further suggest that HCMV infection selectively induces sorting of nucleolar and nucleoplasmic components.


Article metrics loading...

Loading full text...

Full text loading...



  1. Adair, R., Liebisch, G. W. & Colberg-Poley, A. M.(2003). Complex alternative processing of human cytomegalovirus UL37 pre-mRNA. J Gen Virol 84, 3353–3358.[CrossRef] [Google Scholar]
  2. Adair, R., Liebisch, G. W., Su, Y. & Colberg-Poley, A. M.(2004). Alteration of cellular RNA splicing and polyadenylation machineries during productive human cytomegalovirus infection. J Gen Virol 85, 3541–3553.[CrossRef] [Google Scholar]
  3. Adair, R., Liebisch, G. W., Lerman, B. J. & Colberg-Poley, A. M.(2006). Human cytomegalovirus temporally regulated gene expression in differentiated, immortalized retinal pigment epithelial cells. J Clin Virol 35, 478–484.[CrossRef] [Google Scholar]
  4. Ahn, J. H. & Hayward, G. S.(1997). The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71, 4599–4613. [Google Scholar]
  5. Andersen, J. S., Lyon, C. E., Fox, A. H., Leung, A. K., Lam, Y. W., Steen, H., Mann, M. & Lamond, A. I.(2002). Directed proteomic analysis of the human nucleolus. Curr Biol 12, 1–11. [Google Scholar]
  6. Bozidis, P., Williamson, C. D. & Colberg-Poley, A. M.(2008). Mitochondrial and secretory human cytomegalovirus UL37 proteins traffic into mitochondrion-associated membranes of human cells. J Virol 82, 2715–2726.[CrossRef] [Google Scholar]
  7. Camozzi, D., Pignatelli, S., Valvo, C., Lattanzi, G., Capanni, C., Dal Monte, P. & Landini, M. P.(2008). Remodelling of the nuclear lamina during human cytomegalovirus infection: role of the viral proteins pUL50 and pUL53. J Gen Virol 89, 731–740.[CrossRef] [Google Scholar]
  8. Castelo-Branco, P., Furger, A., Wollerton, M., Smith, C., Moreira, A. & Proudfoot, N.(2004). Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol 24, 4174–4183.[CrossRef] [Google Scholar]
  9. Colberg-Poley, A. M., Patel, M. B., Erezo, D. P. & Slater, J. E.(2000). Human cytomegalovirus UL37 immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J Gen Virol 81, 1779–1789. [Google Scholar]
  10. Cosme, R. S., Yamamura, Y. & Tang, Q.(2009). Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus. J Virol 83, 2839–2850.[CrossRef] [Google Scholar]
  11. Ding, J. H., Zhong, X. Y., Hagopian, J. C., Cruz, M. M., Ghosh, G., Feramisco, J., Adams, J. A. & Fu, X. D.(2006). Regulated cellular partitioning of SR protein-specific kinases in mammalian cells. Mol Biol Cell 17, 876–885. [Google Scholar]
  12. Dunn, W., Chou, C., Li, H., Hai, R., Patterson, D., Stolc, V., Zhu, H. & Liu, F.(2003). Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100, 14223–14228.[CrossRef] [Google Scholar]
  13. Dye, B. T. & Patton, J. G.(2001). An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Exp Cell Res 263, 131–144.[CrossRef] [Google Scholar]
  14. Ghetti, A., Pinol-Roma, S., Michael, W. M., Morandi, C. & Dreyfuss, G.(1992). hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 20, 3671–3678.[CrossRef] [Google Scholar]
  15. Goldmacher, V. S., Bartle, L. M., Skaletskaya, A., Dionne, C. A., Kedersha, N. L., Vater, C. A., Han, J. W., Lutz, R. J., Watanabe, S. & other authors(1999). A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96, 12536–12541.[CrossRef] [Google Scholar]
  16. Graveley, B. R.(2000). Sorting out the complexity of SR protein functions. RNA 6, 1197–1211.[CrossRef] [Google Scholar]
  17. Hakki, M., Marshall, E. E., De Niro, K. L. & Geballe, A. P.(2006). Binding and nuclear relocalization of protein kinase R by human cytomegalovirus TRS1. J Virol 80, 11817–11826.[CrossRef] [Google Scholar]
  18. Hayajneh, W. A., Colberg-Poley, A. M., Skaletskaya, A., Bartle, L. M., Lesperance, M. M., Contopoulos-Ioannidis, D. G., Kedersha, N. L. & Goldmacher, V. S.(2001). The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains. Virology 279, 233–240.[CrossRef] [Google Scholar]
  19. Hertel, L., Chou, S. & Mocarski, E. S.(2007). Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog 3, e6[CrossRef] [Google Scholar]
  20. Ishov, A. M., Stenberg, R. M. & Maul, G. G.(1997). Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 138, 5–16.[CrossRef] [Google Scholar]
  21. Jurak, I. & Brune, W.(2006). Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J 25, 2634–2642.[CrossRef] [Google Scholar]
  22. Korioth, F., Maul, G. G., Plachter, B., Stamminger, T. & Frey, J.(1996). The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res 229, 155–158.[CrossRef] [Google Scholar]
  23. Kouzarides, T., Bankier, A. T., Satchwell, S. C., Preddy, E. & Barrell, B. G.(1988). An immediate early gene of human cytomegalovirus encodes a potential membrane glycoprotein. Virology 165, 151–164.[CrossRef] [Google Scholar]
  24. MacDonald, C. C., Wilusz, J. & Shenk, T.(1994). The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 14, 6647–6654. [Google Scholar]
  25. Marschall, M., Marzi, A., aus dem Siepen, P., Jochmann, R., Kalmer, M., Auerochs, S., Lischka, P., Leis, M. & Stamminger, T.(2005). Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. J Biol Chem 280, 33357–33367.[CrossRef] [Google Scholar]
  26. Matera, A. G., Frey, M. R., Margelot, K. & Wolin, S. L.(1995). A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol 129, 1181–1193.[CrossRef] [Google Scholar]
  27. Matlin, A. J. & Moore, M. J.(2007). Spliceosome assembly and composition. Adv Exp Med Biol 623, 14–35. [Google Scholar]
  28. Mavinakere, M. S., Williamson, C. D., Goldmacher, V. S. & Colberg-Poley, A. M.(2006). Processing of human cytomegalovirus UL37 mutant glycoproteins in the endoplasmic reticulum lumen prior to mitochondrial importation. J Virol 80, 6771–6783.[CrossRef] [Google Scholar]
  29. McCormick, A. L., Meiering, C. D., Smith, G. B. & Mocarski, E. S.(2005). Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol 79, 12205–12217.[CrossRef] [Google Scholar]
  30. Milbradt, J., Auerochs, S. & Marschall, M.(2007). Cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. J Gen Virol 88, 2642–2650.[CrossRef] [Google Scholar]
  31. Milbradt, J., Auerochs, S., Sticht, H. & Marschall, M.(2009). Cytomegaloviral proteins that associate with the nuclear lamina: components of a postulated nuclear egress complex. J Gen Virol 90, 579–590.[CrossRef] [Google Scholar]
  32. Moore, M. J. & Proudfoot, N. J.(2009). Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700.[CrossRef] [Google Scholar]
  33. Munger, J., Bennett, B. D., Parikh, A., Feng, X. J., McArdle, J., Rabitz, H. A., Shenk, T. & Rabinowitz, J. D.(2008). Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26, 1179–1186.[CrossRef] [Google Scholar]
  34. Papoutsopoulou, S., Nikolakaki, E. & Giannakouros, T.(1999). SRPK1 and LBR protein kinases show identical substrate specificities. Biochem Biophys Res Commun 255, 602–607.[CrossRef] [Google Scholar]
  35. Penfold, M. E. & Mocarski, E. S.(1997). Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. Virology 239, 46–61.[CrossRef] [Google Scholar]
  36. Proudfoot, N.(2004). New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 16, 272–278.[CrossRef] [Google Scholar]
  37. Qu, X., Perez-Canadillas, J. M., Agrawal, S., De Baecke, J., Cheng, H., Varani, G. & Moore, C.(2007). The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing. J Biol Chem 282, 2101–2115.[CrossRef] [Google Scholar]
  38. Reboredo, M., Greaves, R. F. & Hahn, G.(2004). Human cytomegalovirus proteins encoded by UL37 exon 1 protect infected fibroblasts against virus-induced apoptosis and are required for efficient virus replication. J Gen Virol 85, 3555–3567.[CrossRef] [Google Scholar]
  39. Reeves, M. B., Davies, A. A., McSharry, B. P., Wilkinson, G. W. & Sinclair, J. H.(2007). Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316, 1345–1348.[CrossRef] [Google Scholar]
  40. Salsman, J., Zimmerman, N., Chen, T., Domagala, M. & Frappier, L.(2008). Genome-wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS Pathog 4, e1000100[CrossRef] [Google Scholar]
  41. Sanchez, V., McElroy, A. K., Yen, J., Tamrakar, S., Clark, C. L., Schwartz, R. A. & Spector, D. H.(2004). Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122–123 and UL37 immediate-early transcripts and at later times for virus production. J Virol 78, 11219–11232.[CrossRef] [Google Scholar]
  42. Santomenna, L. D. & Colberg-Poley, A. M.(1990). Induction of cellular hsp70 expression by human cytomegalovirus. J Virol 64, 2033–2040. [Google Scholar]
  43. Scherl, A., Couté, Y., Déon, C., Callé, A., Kindbeiter, K., Sanchez, J. C., Greco, A., Hochstrasser, D. & Diaz, J. J.(2002). Functional proteomic analysis of human nucleolus. Mol Biol Cell 13, 4100–4109.[CrossRef] [Google Scholar]
  44. Sharon-Friling, R., Goodhouse, J., Colberg-Poley, A. M. & Shenk, T.(2006). Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores. Proc Natl Acad Sci U S A 103, 19117–19122.[CrossRef] [Google Scholar]
  45. Shav-Tal, Y., Blechman, J., Darzacq, X., Montagna, C., Dye, B. T., Patton, J. G., Singer, R. H. & Zipori, D.(2005). Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16, 2395–2413.[CrossRef] [Google Scholar]
  46. Shen, H., Kan, J. L. & Green, M. R.(2004). Arginine–serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. Mol Cell 13, 367–376.[CrossRef] [Google Scholar]
  47. Skaletskaya, A., Bartle, L. M., Chittenden, T., McCormick, A. L., Mocarski, E. S. & Goldmacher, V. S.(2001). A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 98, 7829–7834.[CrossRef] [Google Scholar]
  48. Su, Y., Adair, R., Davis, C. N., DiFronzo, N. L. & Colberg-Poley, A. M.(2003a). Convergence of RNA cis elements and cellular polyadenylation factors in the regulation of human cytomegalovirus UL37 exon 1 unspliced RNA production. J Virol 77, 12729–12741.[CrossRef] [Google Scholar]
  49. Su, Y., Testaverde, J. R., Davis, C. N., Hayajneh, W. A., Adair, R. & Colberg-Poley, A. M.(2003b). Human cytomegalovirus UL37 immediate early target minigene RNAs are accurately spliced and polyadenylated. J Gen Virol 84, 29–39.[CrossRef] [Google Scholar]
  50. Takagaki, Y. & Manley, J. L.(1998). Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 2, 761–771.[CrossRef] [Google Scholar]
  51. Takagaki, Y., MacDonald, C. C., Shenk, T. & Manley, J. L.(1992). The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs. Proc Natl Acad Sci U S A 89, 1403–1407.[CrossRef] [Google Scholar]
  52. Takano, M., Koyama, Y., Ito, H., Hoshino, S., Onogi, H., Hagiwara, M., Furukawa, K. & Horigome, T.(2004). Regulation of binding of lamin B receptor to chromatin by SR protein kinase and cdc2 kinase in Xenopus egg extracts. J Biol Chem 279, 13265–13271.[CrossRef] [Google Scholar]
  53. Tamrakar, S., Kapasi, A. J. & Spector, D. H.(2005). Human cytomegalovirus infection induces specific hyperphosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II that is associated with changes in the abundance, activity, and localization of cdk9 and cdk7. J Virol 79, 15477–15493.[CrossRef] [Google Scholar]
  54. Tenney, D. J. & Colberg-Poley, A. M.(1990). RNA analysis and isolation of cDNAs derived from the human cytomegalovirus immediate-early region at 0.24 map units. Intervirology 31, 203–214. [Google Scholar]
  55. Tenney, D. J. & Colberg-Poley, A. M.(1991a). Expression of the human cytomegalovirus UL36–38 immediate early region during permissive infection. Virology 182, 199–210.[CrossRef] [Google Scholar]
  56. Tenney, D. J. & Colberg-Poley, A. M.(1991b). Human cytomegalovirus UL36–38 and US3 immediate-early genes: temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J Virol 65, 6724–6734. [Google Scholar]
  57. Terhune, S., Torigoi, E., Moorman, N., Silva, M., Qian, Z., Shenk, T. & Yu, D.(2007). Human cytomegalovirus UL38 protein blocks apoptosis. J Virol 81, 3109–3123.[CrossRef] [Google Scholar]
  58. Wahl, M. C., Will, C. L. & Luhrmann, R.(2009). The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718.[CrossRef] [Google Scholar]
  59. Wang, C., Politz, J. C., Pederson, T. & Huang, S.(2003). RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell 14, 2425–2435.[CrossRef] [Google Scholar]
  60. Wilusz, J., Shenk, T., Takagaki, Y. & Manley, J. L.(1990). A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates. Mol Cell Biol 10, 1244–1248. [Google Scholar]
  61. Zhong, X. Y., Ding, J. H., Adams, J. A., Ghosh, G. & Fu, X. D.(2009). Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes Dev 23, 482–495.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error