1887

Abstract

RNA genomes are vulnerable to corruption by a range of activities, including inaccurate replication by the error-prone replicase, damage from environmental factors, and attack by nucleases and other RNA-modifying enzymes that comprise the cellular intrinsic or innate immune response. Damage to coding regions and loss of critical -acting signals inevitably impair genome fitness; as a consequence, RNA viruses have evolved a variety of mechanisms to protect their genome integrity. These include mechanisms to promote replicase fidelity, recombination activities that allow exchange of sequences between different RNA templates, and mechanisms to repair the genome termini. In this article, we review examples of these processes from a range of RNA viruses to showcase the diverse approaches that viruses have evolved to maintain their genome sequence integrity, focusing first on mechanisms that viruses use to protect their entire genome, and then concentrating on mechanisms that allow protection of the genome termini, which are especially vulnerable. In addition, we discuss examples in which it might be beneficial for a virus to ‘lose’ its genomic termini and reduce its replication efficiency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.020818-0
2010-06-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/6/1373.html?itemId=/content/journal/jgv/10.1099/vir.0.020818-0&mimeType=html&fmt=ahah

References

  1. Aas, P. A., Otterlei, M., Falnes, P. O., Vagbo, C. B., Skorpen, F., Akbari, M., Sundheim, O., Bjoras, M., Slupphaug, G. & other authors(2003). Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421, 859–863.[CrossRef] [Google Scholar]
  2. Allison, R., Thompson, C. & Ahlquist, P.(1990). Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proc Natl Acad Sci U S A 87, 1820–1824.[CrossRef] [Google Scholar]
  3. Beckham, C. J. & Parker, R.(2008). P bodies, stress granules, and viral life cycles. Cell Host Microbe 3, 206–212.[CrossRef] [Google Scholar]
  4. Behrens, S. E., Tomei, L. & De Francesco, R.(1996). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 15, 12–22. [Google Scholar]
  5. Bick, M. J., Carroll, J. W., Gao, G., Goff, S. P., Rice, C. M. & MacDonald, M. R.(2003). Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 77, 11555–11562.[CrossRef] [Google Scholar]
  6. Biebricher, C. K., Eigen, M. & Luce, R.(1986). Template-free RNA synthesis by Qβ replicase. Nature 321, 89–91.[CrossRef] [Google Scholar]
  7. Boni, M. F., Zhou, Y., Taubenberger, J. K. & Holmes, E. C.(2008). Homologous recombination is very rare or absent in human influenza A virus. J Virol 82, 4807–4811.[CrossRef] [Google Scholar]
  8. Bratlie, M. S. & Drablos, F.(2005). Bioinformatic mapping of AlkB homology domains in viruses. BMC Genomics 6, 1[CrossRef] [Google Scholar]
  9. Bujarski, J. J. & Kaesberg, P.(1986). Genetic recombination between RNA components of a multipartite plant virus. Nature 321, 528–531.[CrossRef] [Google Scholar]
  10. Burgyan, J. & Garcia-Arenal, F.(1998). Template-independent repair of the 3′ end of cucumber mosaic virus satellite RNA controlled by RNAs 1 and 2 of helper virus. J Virol 72, 5061–5066. [Google Scholar]
  11. Burke, K. P. & Cox, A. L.(2010). Hepatitis C virus evasion of adaptive immune responses: a model for viral persistence. Immunol Res (in press). doi:10.1007/s12026-009-8152-3 [Google Scholar]
  12. Calain, P. & Roux, L.(1993). The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67, 4822–4830. [Google Scholar]
  13. Carpenter, C. D. & Simon, A. E.(1996).In vivo repair of 3′-end deletions in a TCV satellite RNA may involve two abortive synthesis and priming events. Virology 226, 153–160.[CrossRef] [Google Scholar]
  14. Carpousis, A. J. & Gralla, J. D.(1980). Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry 19, 3245–3253.[CrossRef] [Google Scholar]
  15. Castro, C., Arnold, J. J. & Cameron, C. E.(2005). Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res 107, 141–149.[CrossRef] [Google Scholar]
  16. Cattaneo, R., Kaelin, K., Baczko, K. & Billeter, M. A.(1989). Measles virus editing provides an additional cysteine-rich protein. Cell 56, 759–764.[CrossRef] [Google Scholar]
  17. Chapman, N. M., Kim, K. S., Drescher, K. M., Oka, K. & Tracy, S.(2008). 5′ Terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart. Virology 375, 480–491.[CrossRef] [Google Scholar]
  18. Chare, E. R., Gould, E. A. & Holmes, E. C.(2003). Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol 84, 2691–2703.[CrossRef] [Google Scholar]
  19. Chen, M. H. & Frey, T. K.(1999). Mutagenic analysis of the 3′ cis-acting elements of the rubella virus genome. J Virol 73, 3386–3403. [Google Scholar]
  20. Chen, D. & Patton, J. T.(2000).De novo synthesis of minus strand RNA by the rotavirus RNA polymerase in a cell-free system involves a novel mechanism of initiation. RNA 6, 1455–1467.[CrossRef] [Google Scholar]
  21. Chen, P., Jiang, M., Hu, T., Liu, Q., Chen, X. S. & Guo, D.(2007). Biochemical characterization of exoribonuclease encoded by SARS coronavirus. J Biochem Mol Biol 40, 649–655.[CrossRef] [Google Scholar]
  22. Chetverin, A. B., Chetverina, H. V. & Munishkin, A. V.(1991). On the nature of spontaneous RNA synthesis by Qβ replicase. J Mol Biol 222, 3–9.[CrossRef] [Google Scholar]
  23. Copper, P. D., Steiner-Pryor, A., Scotti, P. D. & Delong, D.(1974). On the nature of poliovirus genetic recombinants. J Gen Virol 23, 41–49.[CrossRef] [Google Scholar]
  24. Crotty, S. & Andino, R.(2002). Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug ribavirin. Microbes Infect 4, 1301–1307.[CrossRef] [Google Scholar]
  25. Dalmay, T., Russo, M. & Burgyan, J.(1993). Repair in vivo of altered 3′ terminus of Cymbidium ringspot tombusvirus RNA. Virology 192, 551–555.[CrossRef] [Google Scholar]
  26. Deng, T., Vreede, F. T. & Brownlee, G. G.(2006). Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol 80, 2337–2348.[CrossRef] [Google Scholar]
  27. Drake, J. W.(1993). Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90, 4171–4175.[CrossRef] [Google Scholar]
  28. Dreher, T. W.(2009). Role of tRNA-like structures in controlling plant virus replication. Virus Res 139, 217–229.[CrossRef] [Google Scholar]
  29. Duffy, S., Shackelton, L. A. & Holmes, E. C.(2008). Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9, 267–276. [Google Scholar]
  30. Dupuy, L. C., Dobson, S., Bitko, V. & Barik, S.(1999). Casein kinase 2-mediated phosphorylation of respiratory syncytial virus phosphoprotein P is essential for the transcription elongation activity of the viral polymerase; phosphorylation by casein kinase 1 occurs mainly at Ser(215) and is without effect. J Virol 73, 8384–8392. [Google Scholar]
  31. Eckerle, L. D., Lu, X., Sperry, S. M., Choi, L. & Denison, M. R.(2007). High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol 81, 12135–12144.[CrossRef] [Google Scholar]
  32. Egelman, E. H., Wu, S. S., Amrein, M., Portner, A. & Murti, G.(1989). The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 63, 2233–2243. [Google Scholar]
  33. Eggen, R., Verver, J., Wellink, J., De Jong, A., Goldbach, R. & van Kammen, A.(1989). Improvements of the infectivity of in vitro transcripts from cloned cowpea mosaic virus cDNA: impact of terminal nucleotide sequences. Virology 173, 447–455.[CrossRef] [Google Scholar]
  34. Farsetta, D. L., Chandran, K. & Nibert, M. L.(2000). Transcriptional activities of reovirus RNA polymerase in recoated cores. Initiation and elongation are regulated by separate mechanisms. J Biol Chem 275, 39693–39701.[CrossRef] [Google Scholar]
  35. Fitzgerald, M. & Shenk, T.(1981). The sequence 5′-AAUAAA-3′ forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24, 251–260.[CrossRef] [Google Scholar]
  36. Fujimura, T. & Esteban, R.(2004). Bipartite 3′-cis-acting signal for replication in yeast 23 S RNA virus and its repair. J Biol Chem 279, 13215–13223.[CrossRef] [Google Scholar]
  37. Fullerton, S. W., Blaschke, M., Coutard, B., Gebhardt, J., Gorbalenya, A., Canard, B., Tucker, P. A. & Rohayem, J.(2007). Structural and functional characterization of sapovirus RNA-dependent RNA polymerase. J Virol 81, 1858–1871.[CrossRef] [Google Scholar]
  38. Galinski, M. S., Troy, R. M. & Banerjee, A. K.(1992). RNA editing in the phosphoprotein gene of the human parainfluenza virus type 3. Virology 186, 543–550.[CrossRef] [Google Scholar]
  39. Garcin, D. & Kolakofsky, D.(1992). Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J Virol 66, 1370–1376. [Google Scholar]
  40. George, J. & Raju, R.(2000). Alphavirus RNA genome repair and evolution: molecular characterization of infectious Sindbis virus isolates lacking a known conserved motif at the 3′ end of the genome. J Virol 74, 9776–9785.[CrossRef] [Google Scholar]
  41. Gmyl, A. P., Belousov, E. V., Maslova, S. V., Khitrina, E. V., Chetverin, A. B. & Agol, V. I.(1999). Nonreplicative RNA recombination in poliovirus. J Virol 73, 8958–8965. [Google Scholar]
  42. Gmyl, A. P., Korshenko, S. A., Belousov, E. V., Khitrina, E. V. & Agol, V. I.(2003). Nonreplicative homologous RNA recombination: promiscuous joining of RNA pieces? RNA 9, 1221–1231.[CrossRef] [Google Scholar]
  43. Guan, H. & Simon, A. E.(2000). Polymerization of nontemplate bases before transcription initiation at the 3′ ends of templates by an RNA-dependent RNA polymerase: an activity involved in 3′ end repair of viral RNAs. Proc Natl Acad Sci U S A 97, 12451–12456.[CrossRef] [Google Scholar]
  44. Guilford, P. J., Beck, D. L. & Forster, R. L.(1991). Influence of the poly(A) tail and putative polyadenylation signal on the infectivity of white clover mosaic potexvirus. Virology 182, 61–67.[CrossRef] [Google Scholar]
  45. Guschina, E. & Benecke, B. J.(2008). Specific and non-specific mammalian RNA terminal uridylyl transferases. Biochim Biophys Acta 1779, 281–285.[CrossRef] [Google Scholar]
  46. Habjan, M., Andersson, I., Klingstrom, J., Schumann, M., Martin, A., Zimmermann, P., Wagner, V., Pichlmair, A., Schneider, U. & other authors(2008). Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One 3, e2032[CrossRef] [Google Scholar]
  47. Han, G. Z., He, C. Q., Ding, N. Z. & Ma, L. Y.(2008a). Identification of a natural multi-recombinant of Newcastle disease virus. Virology 371, 54–60.[CrossRef] [Google Scholar]
  48. Han, G. Z., Liu, X. P. & Li, S. S.(2008b). Homologous recombination is unlikely to play a major role in influenza B virus evolution. Virol J 5, 65[CrossRef] [Google Scholar]
  49. Harmon, S. A., Richards, O. C., Summers, D. F. & Ehrenfeld, E.(1991). The 5′-terminal nucleotides of hepatitis A virus RNA, but not poliovirus RNA, are required for infectivity. J Virol 65, 2757–2760. [Google Scholar]
  50. Hema, M., Gopinath, K. & Kao, C.(2005). Repair of the tRNA-like CCA sequence in a multipartite positive-strand RNA virus. J Virol 79, 1417–1427.[CrossRef] [Google Scholar]
  51. Hill, D. & Blumenthal, T.(1983). Does Qβ replicase synthesize RNA in the absence of template? Nature 301, 350–352.[CrossRef] [Google Scholar]
  52. Hill, K. R., Hajjou, M., Hu, J. Y. & Raju, R.(1997). RNA–RNA recombination in Sindbis virus: roles of the 3′ conserved motif, poly(A) tail, and nonviral sequences of template RNAs in polymerase recognition and template switching. J Virol 71, 2693–2704. [Google Scholar]
  53. Honda, A., Mizumoto, K. & Ishihama, A.(1986). RNA polymerase of influenza virus. Dinucleotide-primed initiation of transcription at specific positions on viral RNA. J Biol Chem 261, 5987–5991. [Google Scholar]
  54. Houseley, J. & Tollervey, D.(2009). The many pathways of RNA degradation. Cell 136, 763–776.[CrossRef] [Google Scholar]
  55. Huang, A. S. & Baltimore, D.(1970). Defective viral particles and viral disease processes. Nature 226, 325–327.[CrossRef] [Google Scholar]
  56. Jakab, G., Droz, E., Brigneti, G., Baulcombe, D. & Malnoe, P.(1997). Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus Y. J Gen Virol 78, 3141–3145. [Google Scholar]
  57. Joshi, R. L., Joshi, S., Chapeville, F. & Haenni, A. L.(1983). tRNA-like structures of plant viral RNAs: conformational requirements for adenylation and aminoacylation. EMBO J 2, 1123–1127. [Google Scholar]
  58. Jupin, I., Bouzoubaa, S., Richards, K., Jonard, G. & Guilley, H.(1990). Multiplication of beet necrotic yellow vein virus RNA 3 lacking a 3′ poly(A) tail is accompanied by reappearance of the poly(A) tail and a novel short U-rich tract preceding it. Virology 178, 281–284.[CrossRef] [Google Scholar]
  59. Kao, C. C. & Sun, J. H.(1996). Initiation of minus-strand RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase: use of oligoribonucleotide primers. J Virol 70, 6826–6830. [Google Scholar]
  60. Kawakami, K., Ishihama, A., Ohtsuka, E., Tanaka, T., Takashima, H. & Ikehara, M.(1981). RNA polymerase of influenza virus. II. Influence of oligonucleotide chain length on the priming activity of RNA synthesis by virion-associated RNA polymerase. J Biochem 89, 1759–1768. [Google Scholar]
  61. Kim, K. S., Tracy, S., Tapprich, W., Bailey, J., Lee, C. K., Kim, K., Barry, W. H. & Chapman, N. M.(2005). 5′-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 79, 7024–7041.[CrossRef] [Google Scholar]
  62. Klump, W. M., Bergmann, I., Muller, B. C., Ameis, D. & Kandolf, R.(1990). Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: two initial 5′ uridine residues are regained during plus-strand RNA synthesis. J Virol 64, 1573–1583. [Google Scholar]
  63. Klumpp, K., Ford, M. J. & Ruigrok, R. W.(1998). Variation in ATP requirement during influenza virus transcription. J Gen Virol 79, 1033–1045. [Google Scholar]
  64. Koetzner, C. A., Parker, M. M., Ricard, C. S., Sturman, L. S. & Masters, P. S.(1992). Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. J Virol 66, 1841–1848. [Google Scholar]
  65. Kolakofsky, D., Pelet, T., Garcin, D., Hausmann, S., Curran, J. & Roux, L.(1998). Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72, 891–899. [Google Scholar]
  66. Kolakofsky, D., Roux, L., Garcin, D. & Ruigrok, R. W.(2005). Paramyxovirus mRNA editing, the ‘rule of six’ and error catastrophe: a hypothesis. J Gen Virol 86, 1869–1877.[CrossRef] [Google Scholar]
  67. Kusov, Y. Y., Gosert, R. & Gauss-Muller, V.(2005). Replication and in vivo repair of the hepatitis A virus genome lacking the poly(A) tail. J Gen Virol 86, 1363–1368.[CrossRef] [Google Scholar]
  68. Lazzarini, R. A., Keene, J. D. & Schubert, M.(1981). The origins of defective interfering particles of the negative-strand RNA viruses. Cell 26, 145–154.[CrossRef] [Google Scholar]
  69. Liu, Y., Wimmer, E. & Paul, A. V.(2009).Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta 1789, 495–517.[CrossRef] [Google Scholar]
  70. Mackenzie, J.(2005). Wrapping things up about virus RNA replication. Traffic 6, 967–977.[CrossRef] [Google Scholar]
  71. Martin, G. & Keller, W.(2007). RNA-specific ribonucleotidyl transferases. RNA 13, 1834–1849.[CrossRef] [Google Scholar]
  72. McClure, M. A., Thibault, K. J., Hatalski, C. G. & Lipkin, W. I.(1992). Sequence similarity between Borna disease virus p40 and a duplicated domain within the paramyxovirus and rhabdovirus polymerase proteins. J Virol 66, 6572–6577. [Google Scholar]
  73. Mellman, D. L., Gonzales, M. L., Song, C., Barlow, C. A., Wang, P., Kendziorski, C. & Anderson, R. A.(2008). A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451, 1013–1017.[CrossRef] [Google Scholar]
  74. Meyer, B. J. & Schmaljohn, C.(2000). Accumulation of terminally deleted RNAs may play a role in Seoul virus persistence. J Virol 74, 1321–1331.[CrossRef] [Google Scholar]
  75. Meyer, B. J. & Southern, P. J.(1994). Sequence heterogeneity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J Virol 68, 7659–7664. [Google Scholar]
  76. Meyer, B. J. & Southern, P. J.(1997). A novel type of defective viral genome suggests a unique strategy to establish and maintain persistent lymphocytic choriomeningitis virus infections. J Virol 71, 6757–6764. [Google Scholar]
  77. Miller, W. A., Bujarski, J. J., Dreher, T. W. & Hall, T. C.(1986). Minus-strand initiation by brome mosaic virus replicase within the 3′ tRNA-like structure of native and modified RNA templates. J Mol Biol 187, 537–546.[CrossRef] [Google Scholar]
  78. Minskaia, E., Hertzig, T., Gorbalenya, A. E., Campanacci, V., Cambillau, C., Canard, B. & Ziebuhr, J.(2006). Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 103, 5108–5113.[CrossRef] [Google Scholar]
  79. Munishkin, A. V., Voronin, L. A. & Chetverin, A. B.(1988). An in vivo recombinant RNA capable of autocatalytic synthesis by Qβ replicase. Nature 333, 473–475.[CrossRef] [Google Scholar]
  80. Nagy, P. D., Carpenter, C. D. & Simon, A. E.(1997). A novel 3′-end repair mechanism in an RNA virus. Proc Natl Acad Sci U S A 94, 1113–1118.[CrossRef] [Google Scholar]
  81. Neufeld, K. L., Galarza, J. M., Richards, O. C., Summers, D. F. & Ehrenfeld, E.(1994). Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol. J Virol 68, 5811–5818. [Google Scholar]
  82. Nomaguchi, M., Ackermann, M., Yon, C., You, S. & Padmanabhan, R.(2003).De novo synthesis of negative-strand RNA by dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J Virol 77, 8831–8842.[CrossRef] [Google Scholar]
  83. Olsthoorn, R. C. & van Duin, J.(1996). Evolutionary reconstruction of a hairpin deleted from the genome of an RNA virus. Proc Natl Acad Sci U S A 93, 12256–12261.[CrossRef] [Google Scholar]
  84. Palasingam, K. & Shaklee, P. N.(1992). Reversion of Qβ RNA phage mutants by homologous RNA recombination. J Virol 66, 2435–2442. [Google Scholar]
  85. Poranen, M. M., Koivunen, M. R. & Bamford, D. H.(2008). Nontemplated terminal nucleotidyltransferase activity of double-stranded RNA bacteriophage φ6 RNA-dependent RNA polymerase. J Virol 82, 9254–9264.[CrossRef] [Google Scholar]
  86. Raju, R., Subramaniam, S. V. & Hajjou, M.(1995). Genesis of Sindbis virus by in vivo recombination of nonreplicative RNA precursors. J Virol 69, 7391–7401. [Google Scholar]
  87. Raju, R., Hajjou, M., Hill, K. R., Botta, V. & Botta, S.(1999).In vivo addition of poly(A) tail and AU-rich sequences to the 3′ terminus of the Sindbis virus RNA genome: a novel 3′-end repair pathway. J Virol 73, 2410–2419. [Google Scholar]
  88. Ranjith-Kumar, C. T., Gajewski, J., Gutshall, L., Maley, D., Sarisky, R. T. & Kao, C. C.(2001). Terminal nucleotidyl transferase activity of recombinant Flaviviridae RNA-dependent RNA polymerases: implication for viral RNA synthesis. J Virol 75, 8615–8623.[CrossRef] [Google Scholar]
  89. Rao, A. L., Dreher, T. W., Marsh, L. E. & Hall, T. C.(1989). Telomeric function of the tRNA-like structure of brome mosaic virus RNA. Proc Natl Acad Sci U S A 86, 5335–5339.[CrossRef] [Google Scholar]
  90. Riechmann, J. L., Lain, S. & Garcia, J. A.(1990). Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology 177, 710–716.[CrossRef] [Google Scholar]
  91. Rohayem, J., Jager, K., Robel, I., Scheffler, U., Temme, A. & Rudolph, W.(2006). Characterization of norovirus 3Dpol RNA-dependent RNA polymerase activity and initiation of RNA synthesis. J Gen Virol 87, 2621–2630.[CrossRef] [Google Scholar]
  92. Rosario, D., Perez, M. & de la Torre, J. C.(2005). Functional characterization of the genomic promoter of Borna disease virus (BDV): implications of 3′-terminal sequence heterogeneity for BDV persistence. J Virol 79, 6544–6550.[CrossRef] [Google Scholar]
  93. Sanchez, A., Trappier, S. G., Mahy, B. W., Peters, C. J. & Nichol, S. T.(1996). The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A 93, 3602–3607.[CrossRef] [Google Scholar]
  94. Schneider, U., Schwemmle, M. & Staeheli, P.(2005). Genome trimming: a unique strategy for replication control employed by Borna disease virus. Proc Natl Acad Sci U S A 102, 3441–3446.[CrossRef] [Google Scholar]
  95. Silverman, R. H.(2007). Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81, 12720–12729.[CrossRef] [Google Scholar]
  96. Simon-Buela, L., Osaba, L., Garcia, J. A. & Lopez-Moya, J. J.(2000). Preservation of 5′-end integrity of a potyvirus genomic RNA is not dependent on template specificity. Virology 269, 377–382.[CrossRef] [Google Scholar]
  97. Smallwood, S. & Moyer, S. A.(1993). Promoter analysis of the vesicular stomatitis virus RNA polymerase. Virology 192, 254–263.[CrossRef] [Google Scholar]
  98. Song, M. G. & Kiledjian, M.(2007). 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 13, 2356–2365.[CrossRef] [Google Scholar]
  99. Spann, K. M., Collins, P. L. & Teng, M. N.(2003). Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J Virol 77, 11201–11211.[CrossRef] [Google Scholar]
  100. Sumper, M. & Luce, R.(1975). Evidence for de novo production of self-replicating and environmentally adapted RNA structures by bacteriophage Qβ replicase. Proc Natl Acad Sci U S A 72, 162–166.[CrossRef] [Google Scholar]
  101. Sun, J. H. & Kao, C. C.(1997). Characterization of RNA products associated with or aborted by a viral RNA-dependent RNA polymerase. Virology 236, 348–353.[CrossRef] [Google Scholar]
  102. Tacahashi, Y. & Uyeda, I.(1999). Restoration of the 3′ end of potyvirus RNA derived from poly(A)-deficient infectious cDNA clones. Virology 265, 147–152.[CrossRef] [Google Scholar]
  103. Taucher, C., Berger, A. & Mandl, C. W.(2010). A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J Virol 84, 599–611.[CrossRef] [Google Scholar]
  104. Tayon, R., Jr, Kim, M. J. & Kao, C. C.(2001). Completion of RNA synthesis by viral RNA replicases. Nucleic Acids Res 29, 3576–3582.[CrossRef] [Google Scholar]
  105. Teramoto, T., Kohno, Y., Mattoo, P., Markoff, L., Falgout, B. & Padmanabhan, R.(2008). Genome 3′-end repair in dengue virus type 2. RNA 14, 2645–2656.[CrossRef] [Google Scholar]
  106. Thomas, S. M., Lamb, R. A. & Paterson, R. G.(1988). Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell 54, 891–902.[CrossRef] [Google Scholar]
  107. Tomar, S., Hardy, R. W., Smith, J. L. & Kuhn, R. J.(2006). Catalytic core of alphavirus nonstructural protein nsP4 possesses terminal adenylyltransferase activity. J Virol 80, 9962–9969.[CrossRef] [Google Scholar]
  108. Trento, A., Galiano, M., Videla, C., Carballal, G., Garcia-Barreno, B., Melero, J. A. & Palomo, C.(2003). Major changes in the G protein of human respiratory syncytial virus isolates introduced by a duplication of 60 nucleotides. J Gen Virol 84, 3115–3120.[CrossRef] [Google Scholar]
  109. Ugarov, V. I., Demidenko, A. A. & Chetverin, A. B.(2003). Qβ replicase discriminates between legitimate and illegitimate templates by having different mechanisms of initiation. J Biol Chem 278, 44139–44146.[CrossRef] [Google Scholar]
  110. Urbanowicz, A., Alejska, M., Formanowicz, P., Blazewicz, J., Figlerowicz, M. & Bujarski, J. J.(2005). Homologous crossovers among molecules of brome mosaic bromovirus RNA1 or RNA2 segments in vivo. J Virol 79, 5732–5742.[CrossRef] [Google Scholar]
  111. van den Born, E., Omelchenko, M. V., Bekkelund, A., Leihne, V., Koonin, E. V., Dolja, V. V. & Falnes, P. O.(2008). Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucleic Acids Res 36, 5451–5461.[CrossRef] [Google Scholar]
  112. van Dijk, A. A., Makeyev, E. V. & Bamford, D. H.(2004). Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85, 1077–1093.[CrossRef] [Google Scholar]
  113. van Leeuwen, H. C., Liefhebber, J. M. & Spaan, W. J.(2006). Repair and polyadenylation of a naturally occurring hepatitis C virus 3′ nontranslated region – shorter variant in selectable replicon cell lines. J Virol 80, 4336–4343.[CrossRef] [Google Scholar]
  114. van Ooij, M. J., Polacek, C., Glaudemans, D. H., Kuijpers, J., van Kuppeveld, F. J., Andino, R., Agol, V. I. & Melchers, W. J.(2006). Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element. Nucleic Acids Res 34, 2953–2965.[CrossRef] [Google Scholar]
  115. Vidal, S., Curran, J. & Kolakofsky, D.(1990). Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity. J Virol 64, 239–246. [Google Scholar]
  116. Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R.(2006). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348.[CrossRef] [Google Scholar]
  117. Vulliemoz, D. & Roux, L.(2001). ‘Rule of six’: how does the Sendai virus RNA polymerase keep count? J Virol 75, 4506–4518.[CrossRef] [Google Scholar]
  118. Walter, C. T. & Barr, J. N.(2010). Bunyamwera virus can repair both insertions and deletions during RNA replication. RNA (in press). doi:10.1261/rna.1962010 [Google Scholar]
  119. Wickens, M. & Kwak, J. E.(2008). Molecular biology. A tail tale for U. Science 319, 1344–1345.[CrossRef] [Google Scholar]
  120. Wittmann, T. J., Biek, R., Hassanin, A., Rouquet, P., Reed, P., Yaba, P., Pourrut, X., Real, L. A., Gonzalez, J. P. & Leroy, E. M.(2007). Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants. Proc Natl Acad Sci U S A 104, 17123–17127.[CrossRef] [Google Scholar]
/content/journal/jgv/10.1099/vir.0.020818-0
Loading
/content/journal/jgv/10.1099/vir.0.020818-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error