1887

Abstract

Whilst their structure has been well studied, there is little information on the replication biology of tetraviruses because of the lack of suitable tissue-culture cell lines that support virus replication. In this study, the potential site of stunt virus replication was investigated by transient expression of the replicase protein fused to enhanced green fluorescent protein (EGFP) in mammalian and insect cells. When EGFP was present at the C terminus of the protein, fluorescence was located in punctate cytoplasmic structures that were distinct from the peripheral Golgi, endoplasmic reticulum, early endosomes, lysosomes and mitochondria, but overlapped partially with late endosomes. In experiments where targeting to endosomal compartments was examined further by using Cascade Blue–dextran in live cells, no overlap between the replicase and active endocytic organelles was apparent. Analysis of the punctate structures using time-lapse imaging in live cells revealed that they undergo fusion, fission and ‘kiss-and-run’ events. Whilst the source of the membranes used to form the punctate structures remains unclear, we propose that the replicase sequesters membranes from the late endosomes and actively excludes host proteins, either by normal recycling processes or by a replicase-dependent mechanism that may result in the destabilization of the associated membranes and a release of luminal contents into the cytosol. This is the first study describing the localization of a tetravirus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.020156-0
2010-06-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/6/1514.html?itemId=/content/journal/jgv/10.1099/vir.0.020156-0&mimeType=html&fmt=ahah

References

  1. Agrawal, D. K. & Johnson, J. E. ( 1995; ). Assembly of the T=4 Nudaurelia capensis ω virus capsid protein, post-translational cleavage, and specific encapsidation of its mRNA in a baculovirus expression system. Virology 207, 89–97.[CrossRef]
    [Google Scholar]
  2. Aumiller, J. J., Hollister, J. R. & Jarvis, D. L. ( 2006; ). Molecular cloning and functional characterisation of β-N-acetylglucosaminidase genes from Sf9 cells. Protein Expr Purif 47, 571–590.[CrossRef]
    [Google Scholar]
  3. Bright, N. A., Gratian, M. J. & Luzio, J. P. ( 2005; ). Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr Biol 15, 360–365.[CrossRef]
    [Google Scholar]
  4. Brooks, E. M., Gordon, K. H. J., Dorrian, S. J., Hines, E. R. & Hanzlik, T. N. ( 2002; ). Infection of its lepidopteran host by the Helicoverpa armigera stunt virus (Tetraviridae). J Invertebr Pathol 80, 97–111.[CrossRef]
    [Google Scholar]
  5. Canady, M. A., Tihova, M., Hanzlik, T. N., Johnson, J. E. & Yeager, M. ( 2000; ). Large conformational changes in the maturation of a simple RNA virus, Nudaurelia capensis ω virus (NωV). J Mol Biol 299, 573–584.[CrossRef]
    [Google Scholar]
  6. Canady, M. A., Tsuruta, H. & Johnson, J. E. ( 2001; ). Analysis of rapid, large-scale protein quaternary structural changes: time-resolved X-ray solution scattering of Nudaurelia capensis ω virus (NωV) maturation. J Mol Biol 311, 803–814.[CrossRef]
    [Google Scholar]
  7. Chow, K. M., Gakh, O., Payne, I. C., Juliano, M. A., Juliano, L., Isaya, G. & Hersh, L. B. ( 2009; ). Mammalian pitrilysin: substrate specificity and mitochondrial targeting. Biochemistry 48, 2868–2877.[CrossRef]
    [Google Scholar]
  8. Dunn, K. W. & Maxfield, F. R. ( 1992; ). Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes. J Cell Biol 117, 301–310.[CrossRef]
    [Google Scholar]
  9. Du Plessis, L., Hendry, D. A., Dorrington, R. A., Hanzlik, T. N., Johnson, J. E. & Appel, M. ( 2005; ). Revised RNA2 sequence of the tetravirus, Nudaurelia capensis ω virus (NωV). Arch Virol 150, 2397–2402.[CrossRef]
    [Google Scholar]
  10. Entchev, E. V., Schwabedissen, A. & González-Gaitán, M. ( 2000; ). Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991.[CrossRef]
    [Google Scholar]
  11. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A. (editors) ( 2005; ). Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press.
  12. Froshauer, S., Kartenbeck, J. & Helenius, A. ( 1988; ). Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J Cell Biol 107, 2075–2086.[CrossRef]
    [Google Scholar]
  13. Gordon, K. H. J., Johnson, K. N. & Hanzlik, T. N. ( 1995; ). The larger genomic RNA of Helicoverpa armigera stunt tetravirus encodes the viral RNA polymerase and has a novel 3′-terminal tRNA-like structure. Virology 208, 84–98.[CrossRef]
    [Google Scholar]
  14. Gordon, K. H. J., Williams, M. R., Baker, J. S., Gibson, J. M., Bawden, A. L., Millgate, A. G., Larkin, P. J. & Hanzlik, T. N. ( 2001; ). Replication-independent assembly of and insect virus (Tetraviridae) in plant cells. Virology 288, 36–50.[CrossRef]
    [Google Scholar]
  15. Gruenberg, J., Griffiths, G. & Howell, K. E. ( 1989; ). Characterisation of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J Cell Biol 108, 1301–1316.[CrossRef]
    [Google Scholar]
  16. Hanzlik, T. N., Dorrian, S. J., Gordon, K. H. J. & Christian, P. D. ( 1993; ). A novel small RNA virus isolated from the cotton bollworm, Helicoverpa armigera. J Gen Virol 74, 1805–1810.[CrossRef]
    [Google Scholar]
  17. Hanzlik, T. N., Dorrian, S. J., Johnson, K. J., Brooks, E. M. & Gordon, K. H. J. ( 1995; ). Sequence of RNA2 of the Helicoverpa armigera stunt virus (Tetraviridae) and bacterial expression of its genes. J Gen Virol 76, 799–811.[CrossRef]
    [Google Scholar]
  18. Hendry, D., Hodgson, V., Clark, R. & Newman, J. ( 1985; ). Small RNA viruses co-infecting the pine emperor moth (Nudaurelia cytherea capensis). J Gen Virol 66, 627–632.[CrossRef]
    [Google Scholar]
  19. Kawar, Z. & Jarvis, D. J. ( 2001; ). Biosynthesis and subcellular localization of a lepidopteran insect alpha 1,2-mannosidase. Insect Biochem Mol Biol 31, 289–297.[CrossRef]
    [Google Scholar]
  20. Kawar, Z., Karaveg, K., Moremen, K. W. & Jarvis, D. L. ( 2001; ). Insect cells encode a class II α-mannosidase with unique properties. J Biol Chem 276, 16335–16340.[CrossRef]
    [Google Scholar]
  21. Koonin, E. V. ( 1991; ). The phylogeny of RNA-dependent RNA polymerases of positive strand RNA viruses. J Gen Virol 72, 2197–2206.[CrossRef]
    [Google Scholar]
  22. Kurisu, M., Morita, M., Kashiwayama, Y., Yokota, S., Hayashi, H., Sakai, Y., Ohkuma, S., Nishimura, M. & Imanaka, T. ( 2003; ). Existence of catalase-less peroxisomes in Sf21 insect cells. Biochem Biophys Res Commun 306, 169–176.[CrossRef]
    [Google Scholar]
  23. Matsuyama, S. & Reed, J. C. ( 2000; ). Mitochondria-dependant apoptosis and cellular pH regulation. Cell Death Differ 7, 1155–1165.[CrossRef]
    [Google Scholar]
  24. Miller, D. J. & Ahlquist, P. ( 2002; ). Flock House virus RNA polymerase is a transmembrane protein with amino-terminal sequences sufficient for mitochondrial localization and membrane insertion. J Virol 76, 9856–9867.[CrossRef]
    [Google Scholar]
  25. Miller, D. J., Schwartz, M. D. & Ahlquist, P. ( 2001; ). Flock House virus RNA replicates on outer mitochondrial membranes in Drosophila cells. J Virol 75, 11664–11676.[CrossRef]
    [Google Scholar]
  26. Miller, D. J., Schwartz, M. D., Dye, B. T. & Ahlquist, P. ( 2003; ). Engineered retargeting of viral RNA replication complexes to an alternative intracellular membrane. J Virol 77, 12193–12202.[CrossRef]
    [Google Scholar]
  27. Moffat, K., Howell, G., Knox, C., Belsham, G. J., Monaghan, P., Ryan, M. D. & Wileman, T. ( 2005; ). Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretorypathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J Virol 79, 4382–4395.[CrossRef]
    [Google Scholar]
  28. Nilsson, C., Johansson, U., Johansson, A.-C., Kågedal, K. & Öllinger, K. ( 2006; ). Cytosolic acidification and lysosomal alkalinization during TNF-α induced apoptosis in U937 cells. Apoptosis 11, 1149–1159.[CrossRef]
    [Google Scholar]
  29. Pelkmans, L. & Helenius, A. ( 2003; ). Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15, 414–422.[CrossRef]
    [Google Scholar]
  30. Pelkmans, L., Bürli, T., Zerial, M. & Helenius, A. ( 2004; ). Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780.[CrossRef]
    [Google Scholar]
  31. Pringle, F. M., Johnson, K. N., Goodman, C. L., McIntosh, A. H. & Ball, L. A. ( 2003; ). Providence virus: a new member of the Tetraviridae that infects cultured insect cells. Virology 306, 359–370.[CrossRef]
    [Google Scholar]
  32. Restrepo-Hartwig, M. A. & Ahlquist, P. ( 1996; ). Brome mosaic virus helicase- and polymerase-like proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J Virol 70, 8908–8916.
    [Google Scholar]
  33. Restrepo-Hartwig, M. & Ahlquist, P. ( 1999; ). Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol 73, 10303–10309.
    [Google Scholar]
  34. Sasamura, T., Ishikawa, H. O., Sasaki, N., Higashi, S., Kanai, M., Nakao, S., Ayukawa, T., Aigaki, T., Noda, K. & other authors ( 2007; ). The O-fucosyltransferase O-fut1 is an extracellular component that is essential for the consitutive endocytic trafficking of Notch in Drosophila. Development 134, 1347–1356.[CrossRef]
    [Google Scholar]
  35. Sbalzarini, I. F. & Koumoutsakos, P. ( 2005; ). Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151, 182–195.[CrossRef]
    [Google Scholar]
  36. Schlegel, A., Giddingsm, T. H., Jr, Ladinsky, M. S. & Kirkegaard, K. ( 1996; ). Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70, 6576–6588.
    [Google Scholar]
  37. Tomasicchio, M., Venter, P. A., Gordon, K. H. J., Hanzlik, T. N. & Dorrington, R. A. ( 2007; ). Induction of apoptosis in Saccharomyces cerevisiae results in the spontaneous maturation of tetravirus procapsids in vivo. J Gen Virol 88, 1576–1582.[CrossRef]
    [Google Scholar]
  38. Walter, C. T. ( 2008; ). Establishing experimental systems for studying the replication biology of Providence virus. PhD thesis, Rhodes University, Grahamstown, South Africa.
  39. Yi, F., Zhang, J., Yu, H., Liu, C., Wang, J. & Hu, Y. ( 2005; ). Isolation and identification of a new tetravirus from Dendrolimus punctatus larvae collected from Yunnan Province, China. J Gen Virol 86, 789–796.[CrossRef]
    [Google Scholar]
  40. Zhou, L., Zhang, J., Wang, X., Jiang, H., Yi, F. & Hu, Y. ( 2006; ). Expression and characterisation of RNA-dependent RNA polymerase of Dendrolimus punctatus tetravirus. J Biochem Mol Biol 39, 571–577.[CrossRef]
    [Google Scholar]
  41. Zhou, L., Zheng, Y., Jiang, H., Zhou, W., Lin, M., Han, Y., Cao, X., Zhang, J. & Hu, Y. ( 2008; ). RNA-binding properties of Dendrolimus punctatus tetravirus p17 protein. Virus Res 138, 1–6.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.020156-0
Loading
/content/journal/jgv/10.1099/vir.0.020156-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1514–1523

Transport of EGFP-containing structures along similar paths at different time points. REP –EGFP-associated structures were tracked manually as described in Methods. The left panel shows the movement of the punctate structures within a region in the cytoplasm of a single HeLa cell. The centre panel contains the colour overlay generated after two particles were tracked as they were transported along a similar path within the cell at two different time points, and the panel on the right shows the other two panels merged. The first particle (green) was observed to travel a distance of almost 9 µm in 10 s along a pathway before commencing far slower movements in random directions for the following 90 s. A second particle (red) was then observed to move rapidly along a similar path for approximately half the distance, before commencing similar random movements at a corresponding point within the cell. Bar, 5 µm.

[ AVI file] (9.5 MB)



Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error