- Volume 91, Issue 11, 2010
Volume 91, Issue 11, 2010
- Other viruses
-
-
-
Metagenomic sequencing for virus identification in a public-health setting
The use of metagenomics for virus discovery in clinical samples has opened new opportunities for understanding the aetiology of unexplained illness. This study explores the potential of this sequence-independent approach in a public-health setting, by systematic analysis of samples cultured from patients with unexplained illness through a combination of PCR-based assays and viral metagenomics. In total, 1834 cell-culture isolates were collected between 1994 and 2007 through the Enterovirus Surveillance programme in the Netherlands. During the 13 year period, seven samples that exhibited reproducible cytopathogenic effects in cell culture tested negative in standard PCR assays for a range of viruses. In order to fill the diagnostic gap, viral metagenomics was applied to these culture supernatants, resulting in the rapid identification of viruses in all of the samples. The unexplained samples contained BK polyomavirus, herpes simplex virus, Newcastle disease virus and the recently discovered Saffold viruses (SAFV) (which dominated the unexplained samples; n=4). The full genomic sequences of four SAFV genotype 3 (SAFV-3) viruses, which share 88–93 % nucleotide identity with known SAFV-3 viruses, are reported. Further screening for SAFV in additional cultured, unidentified clinical isolates from 2008 and 2009 resulted in identification of another SAFV-positive sample. Although the pathogenicity of the identified viruses has not been established, this study demonstrates that viral metagenomics is a powerful tool that can be integrated into public-health monitoring efforts to investigate unidentified viruses in cell cultures from clinical isolates where standard PCR assays fail to detect viruses.
-
-
- Animal
-
- RNA viruses
-
-
The classical swine fever virus N-terminal protease Npro binds to cellular HAX-1
More LessThe positive-stranded RNA genome of classical swine fever virus (CSFV) encodes 12 known proteins. The first protein to be translated is the N-terminal protease (Npro). Npro helps evade the innate interferon response by targeting interferon regulatory factor-3 for proteasomal degradation and also participates in the evasion of dsRNA-induced apoptosis. To elucidate the mechanisms by which Npro functions, we performed a yeast two-hybrid screen in which the anti-apoptotic protein HAX-1 was identified. The Npro–HAX-1 interaction was confirmed using co-precipitation assays. A dramatic redistribution of both Npro and HAX-1 was observed in co-transfected cells, as well as in transfected cells infected with wild-type CSFV, but not in cells infected with an Npro-deleted CSFV strain.
-
-
-
Molecular epidemiology of current classical swine fever virus isolates of wild boar in Germany
Classical swine fever (CSF) has caused significant economic losses in industrialized pig production, and is still present in some European countries. Recent CSF outbreaks in Europe were mainly associated with strains of genogroup 2 (subgroup 2.3). Although there are extensive datasets regarding 2.3 strains, there is very little information available on longer fragments or whole classical swine fever virus (CSFV) genomes. Furthermore, there are no detailed analyses of the molecular epidemiology of CSFV wild boar isolates available. Nevertheless, complete genome sequences are supportive in phylogenetic analyses, especially in affected wild boar populations. Here, German CSFV strains of subgroup 2.3 were fully sequenced using two different approaches: (i) a universal panel of CSFV primers that were developed to amplify the complete genome in overlapping fragments for chain-terminator sequencing; and (ii) generation of a single full-length amplicon of the CSFV genome obtained by long-range RT-PCR for deep sequencing with next-generation sequencing technology. In total, five different strains of CSFV subgroup 2.3 were completely sequenced using these newly developed protocols. The approach was used to study virus spread and evolutionary history in German wild boar. For the first time, the results of our study clearly argue for the possibility of a long-term persistence of genotype 2.3 CSFV strains in affected regions at an almost undetectable level, even after long-term oral vaccination campaigns with intensive monitoring. Hence, regional persistence in wild boar populations has to be taken into account as an important factor in the continual outbreaks in affected areas.
-
-
-
Molecular epidemiology of Powassan virus in North America
More LessPowassan virus (POW) is a tick-borne flavivirus distributed in Canada, the northern USA and the Primorsky region of Russia. POW is the only tick-borne flavivirus endemic to the western hemisphere, where it is transmitted mainly between Ixodes cookei and groundhogs (Marmota monax). Deer tick virus (DTV), a genotype of POW that has been frequently isolated from deer ticks (Ixodes scapularis), appears to be maintained in an enzootic cycle between these ticks and white-footed mice (Peromyscus leucopus). DTV has been isolated from ticks in several regions of North America, including the upper Midwest and the eastern seaboard. The incidence of human disease due to POW is apparently increasing. Previous analysis of tick-borne flaviviruses endemic to North America have been limited to relatively short genome fragments. We therefore assessed the evolutionary dynamics of POW using newly generated complete and partial genome sequences. Maximum-likelihood and Bayesian phylogenetic inferences showed two well-supported, reciprocally monophyletic lineages corresponding to POW and DTV. Bayesian skyline plots based on year-of-sampling data indicated no significant population size change for either virus lineage. Statistical model-based selection analyses showed evidence of purifying selection in both lineages. Positive selection was detected in NS-5 sequences for both lineages and envelope sequences for POW. Our findings confirm that POW and DTV sequences are relatively stable over time, which suggests strong evolutionary constraint, and support field observations that suggest that tick-borne flavivirus populations are extremely stable in enzootic foci.
-
-
-
Tick-borne encephalitis virus in ticks in Finland, Russian Karelia and Buryatia
Tick-borne encephalitis (TBE) is a central nervous system infection caused by a flavivirus [tick-borne encephalitis virus (TBEV)], transmitted by Ixodes ticks and endemic in a large region in Eurasia. We collected 2411 ticks from Finland and Russia in 2003–2008, screened them for TBEV by RT-PCR and isolated and analysed eight strains belonging to all three TBEV subtypes; in addition, we obtained two European-subtype strains from human serum samples. TBEV RNA prevalence in unengorged ticks was approximately 1 % both in the northernmost TBE-endemic areas of Europe in Finland and Russian Karelia, and in Siberia in Buryatia. In Finland, both Ixodes ricinus and Ixodes persulcatus ticks were found from distinct areas and, in Russian Karelia, were overlapping in the same study site. TBEV E and NS3 gene sequences obtained showed a variability of 0–4 % within European-subtype strains, 2–9 % for Siberian-subtype strains and 3–13 % for Far Eastern-subtype strains.
-
-
-
Construction of a dengue virus type 4 reporter replicon and analysis of temperature-sensitive mutations in non-structural proteins 3 and 5
More LessReplicon systems have been useful to study mechanisms of translation and replication of flavivirus RNAs. In this study, we constructed a dengue virus 4 replicon encoding a Renilla luciferase (R luc) reporter, and six single-residue substitution mutants were generated: L128F and S158P in the non-structural protein (NS) 3 protease domain gene, and N96I, N390A, K437R and M805I in the NS5 gene. The effects of these substitutions on viral RNA translation and/or replication were examined by measuring R luc activities in wild-type and mutant replicon RNA-transfected Vero cells incubated at 35, 37 and 39 °C. Our results show that none of the mutations affected translation of replicon RNAs; however, L128F and S158P of NS3 at 39 °C, and N96I of NS5 at 37 and 39 °C, presented temperature-sensitive (ts) phenotypes for replication. Furthermore, using in vitro methyltransferase assays, we identified that the N96I mutation in NS5 exhibited a ts phenotype for N7-methylation, but not for 2′-O-methylation.
-
-
-
Identification and characterization of deer astroviruses
The threat of emerging infectious viruses in humans requires a more effective approach regarding virus surveillance. A thorough understanding of virus diversity in wildlife provides epidemiological baseline information about pathogens and may lead to the identification of newly emerging pathogens in the future. In this study, diarrhoea samples from an outbreak of gastrointestinal illness in a Danish population of European roe deer were gathered for which no aetiological agent could be identified. Large-scale molecular RNA virus screening, based on host nucleic acid depletion, sequence-independent amplification and sequencing of partially purified viral RNA, revealed the presence of novel astroviruses, CcAstV-1 and CcAstV-2, in two of ten diarrhoea samples. Whether these viruses were responsible for causing diarrhoea remains to be determined. Phylogenetic analyses on amplified sequences showed that these viruses were most closely related to each other, were a novel species in the genus Mamastrovirus and may represent two different serotypes.
-
-
-
Experimental evidence of recombination in murine noroviruses
More LessBased on sequencing data, norovirus (NoV) recombinants have been described, but no experimental evidence of recombination in NoVs has been documented. Using the murine norovirus (MNV) model, we investigated the occurrence of genetic recombination between two co-infecting wild-type MNV isolates in RAW cells. The design of a PCR-based genotyping tool allowed accurate discrimination between the parental genomes and the detection of a viable recombinant MNV (Rec MNV) in the progeny viruses. Genetic analysis of Rec MNV identified a homologous-recombination event located at the ORF1–ORF2 overlap. Rec MNV exhibited distinct growth curves and produced smaller plaques than the wild-type MNV in RAW cells. Here, we demonstrate experimentally that MNV undergoes homologous recombination at the previously described recombination hot spot for NoVs, suggesting that the MNV model might be suitable for in vitro studies of NoV recombination. Moreover, the results show that exchange of genetic material between NoVs can generate viruses with distinct biological properties from the parental viruses.
-
-
-
A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection
More LessEnviroxime is an anti-enterovirus compound that targets viral protein 3A and/or 3AB and suppresses a replication step of enterovirus by an unknown mechanism. To date, a number of anti-enterovirus compounds that have little structural similarity to enviroxime but induce common resistance mutations in the 3A-encoding region have been identified. The present study identified a novel type of functionally enviroxime-like compound, AN-12-H5. This compound had no structural similarity to enviroxime or to known enviroxime-like compounds, including TTP-8307, GW5074 and Flt3 Inhibitor II. A resistance phenotype of poliovirus (PV) to these compounds was conferred by a major enviroxime-resistance mutation of PV (G5318A, 3A-Ala70Thr), but not by resistance mutations to guanidine hydrochloride and brefeldin A. AN-12-H5 had a common structure with the anti-enterovirus 71 (EV71) compound AN-23-F6. AN-12-H5 and AN-23-F6 inhibited an early stage of EV71 infection after virus binding to the cells. Mutations in capsid proteins (G3112A, VP1-Ala224Thr, and G2396A, VP3-Arg227Lys mutations) were determined as resistant mutations to AN-12-H5 and AN-23-F6 in the early stage of EV71 infection. These results suggest that AN-12-H5 is a bifunctional anti-enterovirus compound that belongs to a novel class of enviroxime-like compounds and targets both a replication step and an early stage of EV71 infection.
-
-
-
Evaluation of a modified vaccinia virus Ankara (MVA)-based candidate pandemic influenza A/H1N1 vaccine in the ferret model
The zoonotic transmissions of highly pathogenic avian influenza viruses of the H5N1 subtype that have occurred since 1997 have sparked the development of novel influenza vaccines. The advent of reverse genetics technology, cell-culture production techniques and novel adjuvants has improved the vaccine strain preparation, production process and immunogenicity of the vaccines, respectively, and has accelerated the availability of pandemic influenza vaccines. However, there is still room for improvement, and alternative vaccine preparations can be explored, such as viral vectors. Modified vaccinia virus Ankara (MVA), originally developed as a safe smallpox vaccine, can be exploited as a viral vector and has many favourable properties. Recently, we have demonstrated that an MVA-based vaccine could protect mice and macaques against infection with highly pathogenic influenza viruses of the H5N1 subtype. In the present study, recombinant MVA expressing the haemagglutinin (HA) gene of pandemic influenza A/H1N1 virus was evaluated in the ferret model. A single immunization induced modest antibody responses and afforded only modest protection against the development of severe disease upon infection with a 2009(H1N1) strain. In contrast, two immunizations induced robust antibody responses and protected ferrets from developing severe disease, confirming that MVA is an attractive influenza vaccine production platform.
-
-
-
Plasminogen promotes influenza A virus replication through an annexin 2-dependent pathway in the absence of neuraminidase
More LessProteolytic cleavage of haemagglutinin (HA) is essential for the infectivity of influenza A viruses (IAVs). This is usually mediated by trypsin-like proteases present in the respiratory tract. However, the ability to use plasminogen (PLG) as an alternative protease may contribute to pathogenesis of IAV infections and virus replication outside the respiratory tract. It was demonstrated previously that neuraminidase (NA) of the IAV strain A/WSN/33 can sequester PLG, allowing this virus to replicate in a PLG-dependent fashion. However, PLG also promotes replication of other IAVs, although its mode of action is poorly understood. Here, using NA-deficient viruses, we demonstrate that NA is not required for the binding of PLG and subsequent cleavage of HA. However, we demonstrate that the cellular protein annexin 2 (A2) can bind PLG and contributes to PLG-dependent cleavage of HA and subsequent IAV replication. Collectively, these results indicate that PLG promotes IAV replication in an A2-dependent fashion in the absence of NA.
-
-
-
N-(3-Cyanophenyl)-2-phenylacetamide, an effective inhibitor of morbillivirus-induced membrane fusion with low cytotoxicity
Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC50=3 μM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC50)≥300 μM], leading to a CC50/IC50 ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC50 of approximately 20 μM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 μM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells.
-
-
-
Mumps virus small hydrophobic protein targets ataxin-1 ubiquitin-like interacting protein (ubiquilin 4)
More LessThe small hydrophobic (SH) protein of mumps virus has been reported to interfere with innate immunity by inhibiting tumour necrosis factor alpha-mediated apoptosis. In a yeast two-hybrid screen we have identified the ataxin-1 ubiquitin-like interacting protein (A1Up) as a cellular target of the SH protein. A1Up contains an amino-terminal ubiquitin-like (UbL) domain, a carboxy-terminal ubiquitin-associated (UbA) domain and two stress-inducible heat shock chaperonin-binding (Sti1) motifs. This places it within the ubiquitin-like protein family that is involved in proteasome-mediated activities. Co-immunoprecipitation confirmed the binding of SH and A1Up and demonstrates that a truncated protein fragment corresponding to aa 136–270 of A1Up, which represents the first Sti1-like repeat and an adjacent hydrophobic region, was sufficient for interaction, whereas neither the UbL nor the UbA domains were required for interaction. The ectopic expression of A1Up leads to a redistribution of SH to punctate structures that co-localize with the 20S proteasome in transfected or infected mammalian cells.
-
-
-
Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity
The cytopathogenicity of vesicular stomatitis virus (VSV) has been attributed mainly to the host shut-off activity of the viral matrix (M) protein, which inhibits both nuclear transcription and nucleocytoplasmic RNA transport, thereby effectively suppressing the synthesis of type I interferon (IFN). The M protein from persistently VSV-infected cells was shown to harbour characteristic amino acid substitutions (M51R, V221F and S226R) implicated in IFN induction. This study demonstrates that infection of human fibroblasts with recombinant VSV containing the M51R substitution resulted in IFN induction, whereas neither the V221F nor the S226R substitution effected an IFN-inducing phenotype. Only when V221F was combined with S226R were the host shut-off activity of the M protein abolished and IFN induced, independently of M51R. The M33A substitution, previously implicated in VSV cytotoxicity, did not affect host shut-off activity. M-mutant VSV containing all four amino acid substitutions retained cytotoxic properties in both Vero cells and IFN-competent primary fibroblasts. Infected-cell death was associated with the formation of giant polynucleated cells, suggesting that the fusion activity of the VSV G protein was involved. Accordingly, M-mutant VSV expressing a fusion-defective G protein or with a deletion of the G gene showed significantly reduced cytotoxic properties and caused long-lasting infections in Vero cells and mouse hippocampal slice cultures. In contrast, a G-deleted VSV expressing wild-type M protein remained cytotoxic. These findings indicate that the host shut-off activity of the M protein dominates VSV cytotoxicty, whilst the fusion-active G protein is mainly responsible for the cytotoxicity remaining with M-mutant VSV.
-
-
-
Neutralization activity in a geographically diverse East London cohort of human immunodeficiency virus type 1-infected patients: clade C infection results in a stronger and broader humoral immune response than clade B infection
The array of human immunodeficiency virus (HIV) subtypes encountered in East London, an area long associated with migration, is unusually heterogeneous, reflecting the diverse geographical origins of the population. In this study it was shown that viral subtypes or clades infecting a sample of HIV type 1 (HIV-1)-positive individuals in East London reflect the global pandemic. The authors studied the humoral response in 210 treatment-naïve chronically HIV-1-infected (>1 year) adult subjects against a panel of 12 viruses from six different clades. Plasmas from individuals infected with clade C, but also plasmas from clade A, and to a lesser degree clade CRF02_AG and CRF01_AE, were significantly more potent at neutralizing the tested viruses compared with plasmas from individuals infected with clade B. The difference in humoral robustness between clade C- and B-infected patients was confirmed in titration studies with an extended panel of clade B and C viruses. These results support the approach to develop an HIV-1 vaccine that includes clade C or A envelope protein (Env) immunogens for the induction of a potent neutralizing humoral response.
-
-
-
Suppression of human immunodeficiency virus type 1 replication in macrophages by commensal bacteria preferentially stimulating Toll-like receptor 4
Protection from primary human immunodeficiency virus type 1 (HIV-1) infection has not yet been accomplished by vaccines inducing HIV-1-specific acquired immunity. Nevertheless, it has been reported that a small subgroup of women remain resistant to HIV-1 infection under natural conditions. If similar conditions can be induced in uninfected individuals, it will contribute the first line of protection against HIV-1 infection, and also improve the effects of anti-HIV-1 vaccines. We reasoned that innate immunity may be involved in the resistance to HIV-1 infection, and investigated the effects of various Toll-like receptor (TLR) ligands and commensal bacteria on HIV-1 replication in macrophages, one of the initial targets of HIV-1 infection and also the main mediators of innate immunity. We established the HIV-1 reporter monocytic cell line, THP-1/NL4-3luc, which could be differentiated into macrophage-like cells in vitro. In these cells, stimulation of TLR3 and TLR4 by their ligands suppressed HIV-1 expression partly through type I interferon (IFN). Among the commensal bacteria tested, Escherichia coli, Veillonella parvula and Neisseria mucosa suppressed HIV-1 expression, whereas Lactobacillus acidophilus, Prevotella melaninogenica, P. bivia and Mycobacterium smegmatis enhanced it. The bacteria with suppressive effects preferentially stimulated TLR4, whereas the ones with enhancing effects stimulated TLR2. Neutralizing antibodies against TLR4 and IFN-α/β receptor abrogated bacterially mediated HIV-1 suppression. Suppressive effects of E. coli, V. parvula and N. mucosa on HIV-1 replication were reproducible in primary monocyte-derived macrophages following acute HIV-1 infection. These findings suggest that certain commensal bacteria preferentially stimulating TLR4 potentially produce local environments resistant to HIV-1 infection.
-
-
-
Increases in IgA+ B cells in Peyer's patches during milk-borne mouse mammary tumor virus infection are influenced by Toll-like receptor 4 and are completely dependent on the superantigen response
Mouse mammary tumor virus (MMTV) is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. Although mammary glands are the final target of infection, Peyer's patches (PP) are the entry site of the virus. Herein, we show that the infection induces increases in the number of PP IgA+ B cells and higher expression of the α circular transcript, which is a specific marker of the switch to IgA. In addition, IgA+ B-cell increases correlated with higher levels of cytokines related to IgA class switching, such as interleukin (IL)-5 and IL-6. Of interest, the increases in IgA+ B cells were lower in Toll-like receptor 4-deficient mice and were completely dependent on the presence of superantigen-reactive T cells. Our results point to a novel mechanism involved in MMTV infection and suggest that IgA+ B cells may play an important role in carrying the virus to the mammary glands.
-
-
-
Experimental oral infection of bluetongue virus serotype 8 in type I interferon receptor-deficient mice
More LessThe identification of transmission routes for bluetongue virus (BTV) is essential to improve the control of the disease. Although BTV is primarily transmitted by several species of Culicoides biting midges, there has been evidence of transplacental and oral transmission. We now report that IFNAR(−/−) mice are susceptible to oral infection by BTV-8. Viraemia, clinical manifestations and tissue lesions are similar to those in intravenously infected mice. In addition, we show that the oral cavity and oesophagus are susceptible to BTV infection and replication, suggesting that these organs are possible entry routes during BTV oral infection.
-
-
-
Genome organization and translation products of Providence virus: insight into a unique tetravirus
Providence virus (PrV) is a member of the family Tetraviridae, a family of small, positive-sense, ssRNA viruses that exclusively infect lepidopteran insects. PrV is the only known tetravirus that replicates in tissue culture. We have analysed the genome and characterized the viral translation products, showing that PrV has a monopartite genome encoding three ORFs: (i) p130, unique to PrV and of unknown function; (ii) p104, which contains a read-through stop signal, producing an N-terminal product of 40 kDa (p40) and (iii) the capsid protein precursor (p81). There are three 2A-like processing sequences: one at the N terminus of p130 (PrV-2A1) and two more (PrV-2A2 and PrV-2A3) at the N terminus of p81. Metabolic radiolabelling identified viral translation products corresponding to all three ORFs in persistently infected cells and showed that the read-through stop in p104 and PrV-2A3 in p81 are functional in vivo and these results were confirmed by in vitro translation experiments. The RNA-dependent RNA polymerase domain of the PrV replicase is phylogenetically most closely related to members of the families Tombusviridae and Umbraviridae rather than to members of the family Tetraviridae. The unique genome organization, translational control systems and phylogenetic relationship with the replicases of (+ve) plant viruses lead us to propose that PrV represents a novel family of small insect RNA viruses, distinct from current members of the family Tetraviridae.
-
-
-
Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae
During an investigation of arboviruses in China, a novel dsRNA virus was isolated from adult female Armigeres subalbatus. Full genome sequence analysis showed the virus to be related to members of the family Totiviridae, and was therefore named ‘Armigeres subalbatus totivirus’ (AsTV). Transmission electron microscopy identified icosahedral, non-enveloped virus particles with a mean diameter of 40 nm. The AsTV genome is 7510 bp in length, with two ORFs. ORF1 (4443 nt) encodes the coat-protein and a dsRNA-binding domain (which may be involved in the evasion of ‘gene silencing’), while ORF2 (2286 nt) encodes the viral RNA-dependent RNA polymerase (RdRp). The AsTV coat protein shows a higher level of amino acid identity with Drosophila totivirus (DTV, 52 %) than with infectious myonecrosis virus (IMNV, 29 %). Similarly, the RdRp shows higher identity levels with DTV (51 %) than with IMNV (44 %). Identity levels to other members of the family Totiviridae, in either the coat protein or the RdRp, ranged from 6 to 11 %. Based on a recent reassessment of the coding strategy used by IMNV, we suggest that an AsTV coat–RdRp fusion protein could be synthesized via a −1 frameshift. Elements favouring −1 frameshift such as ‘slippery heptamers’ and pseudonkots, were identified in the AsTV, DTV and IMNV genomes. AsTV was shown to grow in both mosquito and mammalian cells, suggesting that it is an arbovirus that can infect mammals.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)