1887

Abstract

Powassan virus (POW) is a tick-borne flavivirus distributed in Canada, the northern USA and the Primorsky region of Russia. POW is the only tick-borne flavivirus endemic to the western hemisphere, where it is transmitted mainly between and groundhogs (). Deer tick virus (DTV), a genotype of POW that has been frequently isolated from deer ticks (), appears to be maintained in an enzootic cycle between these ticks and white-footed mice (). DTV has been isolated from ticks in several regions of North America, including the upper Midwest and the eastern seaboard. The incidence of human disease due to POW is apparently increasing. Previous analysis of tick-borne flaviviruses endemic to North America have been limited to relatively short genome fragments. We therefore assessed the evolutionary dynamics of POW using newly generated complete and partial genome sequences. Maximum-likelihood and Bayesian phylogenetic inferences showed two well-supported, reciprocally monophyletic lineages corresponding to POW and DTV. Bayesian skyline plots based on year-of-sampling data indicated no significant population size change for either virus lineage. Statistical model-based selection analyses showed evidence of purifying selection in both lineages. Positive selection was detected in NS-5 sequences for both lineages and envelope sequences for POW. Our findings confirm that POW and DTV sequences are relatively stable over time, which suggests strong evolutionary constraint, and support field observations that suggest that tick-borne flavivirus populations are extremely stable in enzootic foci.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.024232-0
2010-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/11/2698.html?itemId=/content/journal/jgv/10.1099/vir.0.024232-0&mimeType=html&fmt=ahah

References

  1. Artsob, H. ( 1988; ). Powassan encephalitis. In The Arboviruses, pp. 29–50. Edited by Monath, T. P.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  2. Baillie, G. J., Kolokotronis, S., Waltari, E., Maffei, J. G., Kramer, L. D. & Perkins, S. L. ( 2008; ). Phylogenetic and evolutionary analyses of St. Louis encephalitis virus genomes. Mol Phylogenet Evol 47, 717–728.[CrossRef]
    [Google Scholar]
  3. Beasley, D. W. C., Suderman, M. T., Holbrook, M. R. & Barrett, A. D. T. ( 2001; ). Nucleotide sequencing and serological evidence that the recently recognized deer tick virus is a genotype of Powassan virus. Virus Res 79, 81–89.[CrossRef]
    [Google Scholar]
  4. Beasley, D. W. C., Davis, C. T., Guzman, H., Vanlandingham, D. L., Travassos da Rosa, A., Parsons, R. E., Higgs, S., Tesh, R. B. & Barrett, A. D. T. ( 2003; ). Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. Virology 309, 190–195.[CrossRef]
    [Google Scholar]
  5. Bertolotti, L., Kitron, U. & Goldberg, T. L. ( 2007; ). Diversity and evolution of West Nile virus in Illinois and the United States, 2002–2005. Virology 360, 143–149.[CrossRef]
    [Google Scholar]
  6. Blaskovic, D. & Nosek, J. ( 1972; ). The ecological approach to the study of tick-borne encephalitis. Prog Med Virol 14, 275–320.
    [Google Scholar]
  7. Brackney, D. E., Nofchissey, R. A., Fitzpatrick, K. A., Brown, I. K. & Ebel, G. D. ( 2008; ). Stable prevalence of Powassan virus in Ixodes scapularis in a northern Wisconsin focus. Am J Trop Med Hyg 79, 971–973.
    [Google Scholar]
  8. Brackney, D. E., Brown, I. K., Nofchissey, R. A., Fitzpatrick, K. A. & Ebel, G. D. ( 2010; ). Homogeneity of Powassan virus populations in naturally infected Ixodes scapularis. Virology 402, 366–371.[CrossRef]
    [Google Scholar]
  9. Bryant, J. E., Holmes, E. C. & Barrett, A. D. T. ( 2007; ). Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathog 3, e75.[CrossRef]
    [Google Scholar]
  10. Carroll, S. A., Bird, B. H., Rollin, P. E. & Nichol, S. T. ( 2010; ). Ancient common ancestry of Crimean–Congo hemorrhagic fever virus. Mol Phylogenet Evol 55, 1103–1110.[CrossRef]
    [Google Scholar]
  11. Charrel, R. N., Zaki, A. M., Fakeeh, M., Yousef, A. I., de Chesse, R., Attoui, H. & de Lamballerie, X. ( 2005; ). Low diversity of Alkhurma hemorrhagic fever virus, Saudi Arabia, 1994–1999. Emerg Infect Dis 11, 683–688.
    [Google Scholar]
  12. Daniels, T. J., Boccia, T. M., Varde, S., Marcus, J., Le, J., Bucher, D. J., Falco, R. C. & Schwartz, I. ( 1998; ). Geographic risk for Lyme disease and human granulocytic ehrlichiosis in southern New York state. Appl Environ Microbiol 64, 4663–4669.
    [Google Scholar]
  13. Drummond, A. J. & Rambaut, A. ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214.[CrossRef]
    [Google Scholar]
  14. Ebel, G. D. & Kramer, L. D. ( 2004; ). Short report: duration of tick attachment required for transmission of Powassan virus by deer ticks. Am J Trop Med Hyg 71, 268–271.
    [Google Scholar]
  15. Ebel, G. D. & Kramer, L. D. ( 2009; ). West Nile virus: molecular epidemiology and diversity. In West Nile Encephalitis Virus Infection, pp. 25–43. Edited by Diamond, M. S.. New York. : Springer ScienceBusiness Media.
    [Google Scholar]
  16. Ebel, G. D., Foppa, I., Spielman, A. & Telford, S. R., III ( 1999; ). A focus of deer tick virus transmission in the northcentral United States. Emerg Infect Dis 5, 570–574.[CrossRef]
    [Google Scholar]
  17. Ebel, G. D., Campbell, E. N., Goethert, H. K., Spielman, A. & Telford, S. R., III ( 2000; ). Enzootic transmission of deer tick virus in New England and Wisconsin sites. Am J Trop Med Hyg 63, 36–42.
    [Google Scholar]
  18. Ebel, G. D., Spielman, A. & Telford, S. R. ( 2001; ). Phylogeny of North American Powassan virus. J Gen Virol 82, 1657–1665.
    [Google Scholar]
  19. Falco, R. C., Daniels, T. J. & Fish, D. ( 1995; ). Increase in abundance of immature Ixodes scapularis (Acari: Ixodidae) in an emergent Lyme disease endemic area. J Med Entomol 32, 522–526.[CrossRef]
    [Google Scholar]
  20. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  21. Goethert, H. K. & Telford, S. R., III ( 2009; ). Nonrandom distribution of vector ticks (Dermacentor variabilis) infected by Francisella tularensis. PLoS Pathog 5, e1000319.[CrossRef]
    [Google Scholar]
  22. Gresikova, M. & Calisher, C. ( 1989; ). Tick-borne encephalitis. In The Arboviruses, pp. 177–202. Edited by Monath, T. P.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  23. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41, 95–98.
    [Google Scholar]
  24. Hinten, S. R., Beckett, G. A., Gensheimer, K. F., Pritchard, E., Courtney, T. M., Sears, S. D., Woytowicz, J. M., Preston, D. G., Smith, R. P., Jr & other authors ( 2008; ). Increased recognition of Powassan encephalitis in the United States, 1999–2005. Vector Borne Zoonotic Dis 8, 733–740.[CrossRef]
    [Google Scholar]
  25. Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C. ( 2002; ). Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54, 156–165.[CrossRef]
    [Google Scholar]
  26. Jerzak, G., Bernard, K. A., Kramer, L. D. & Ebel, G. D. ( 2005; ). Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J Gen Virol 86, 2175–2183.[CrossRef]
    [Google Scholar]
  27. Kosakovsky Pond, S. L & Frost, S. D. ( 2005a; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533.[CrossRef]
    [Google Scholar]
  28. Kosakovsky Pond, S. L. K. & Frost, S. D. W. ( 2005b; ). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22, 1208–1222.[CrossRef]
    [Google Scholar]
  29. Kosakovsky Pond, S. L. K., Posada, D., Gravenor, M. B., Woelk, C. H. & Frost, S. D. W. ( 2006; ). Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23, 1891–1901.[CrossRef]
    [Google Scholar]
  30. Kuno, G., Artsob, H., Karabatsos, N., Tsuchiya, K. R. & Chang, G. J. ( 2001; ). Genomic sequencing of deer tick virus and phylogeny of Powassan-related viruses of North America. Am J Trop Med Hyg 65, 671–676.
    [Google Scholar]
  31. Leonova, G. N., Kondratov, I. G., Ternovoi, V. A., Romanova, E. V., Protopopova, E. V., Chausov, E. V., Pavlenko, E. V., Ryabchikova, E. I., Belikov, S. I. & Loktev, V. B. ( 2009; ). Characterization of Powassan viruses from far eastern Russia. Arch Virol 154, 811–820.[CrossRef]
    [Google Scholar]
  32. Librado, P. & Rozas, J. ( 2009; ). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.[CrossRef]
    [Google Scholar]
  33. Lloyd-Smith, J. O., George, D., Pepin, K. M., Pitzer, V. E., Pulliam, J. R. C., Dobson, A. P., Hudson, P. J. & Grenfell, B. T. ( 2009; ). Epidemic dynamics at the human–animal interface. Science 326, 1362–1367.[CrossRef]
    [Google Scholar]
  34. Mehla, R., Kumar, S. R. P., Yadav, P., Barde, P. V., Yergolkar, P. N., Erickson, B. R., Carroll, S. A., Mishra, A. C., Nichol, S. T. & Mourya, D. T. ( 2009; ). Recent ancestry of Kyasanur forest disease virus. Emerg Infect Dis 15, 1431–1437.[CrossRef]
    [Google Scholar]
  35. Nuttall, P. A., Jones, L. D., Labuda, M. & Kaufman, W. R. ( 1994; ). Adaptations of arboviruses to ticks. J Med Entomol 31, 1–9.[CrossRef]
    [Google Scholar]
  36. Posada, D. & Crandall, K. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  37. Rodgers, S. E. & Mather, T. N. ( 2007; ). Human Babesia microti incidence and Ixodes scapularis distribution, Rhode Island, 1998–2004. Emerg Infect Dis 13, 633–635.[CrossRef]
    [Google Scholar]
  38. Scheffler, K., Martin, D. P. & Seoighe, C. ( 2006; ). Robust inference of positive selection from recombining coding sequences. Bioinformatics 22, 2493–2499.[CrossRef]
    [Google Scholar]
  39. Snapinn, K. W., Holmes, E. C., Young, D. S., Bernard, K. A., Kramer, L. D. & Ebel, G. D. ( 2007; ). Declining growth rate of West Nile virus in North America. J Virol 81, 2531–2534.[CrossRef]
    [Google Scholar]
  40. Suchard, M. A., Weiss, R. E. & Sinsheimer, J. S. ( 2001; ). Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol 18, 1001–1013.[CrossRef]
    [Google Scholar]
  41. Swofford, D. L. ( 2002; ). paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  42. Tavakoli, N. P., Wang, H., Dupuis, M., Hull, R., Ebel, G. D., Gilmore, E. J. & Faust, P. L. ( 2009; ). Fatal case of deer tick virus encephalitis. N Engl J Med 360, 2099–2107.[CrossRef]
    [Google Scholar]
  43. Telford, S. R., Armstrong, P. M., Katavolos, P., Foppa, I., Garcia, A. S., Wilson, M. L. & Spielman, A. ( 1997; ). A new tick-borne encephalitis-like virus infecting New England deer ticks, Ixodes dammini. Emerg Infect Dis 3, 165–170.[CrossRef]
    [Google Scholar]
  44. Whitney, E. & Jamnback, H. ( 1965; ). The first isolations of Powassan virus in New York state. Proc Soc Exp Biol Med 119, 432–435.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.024232-0
Loading
/content/journal/jgv/10.1099/vir.0.024232-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error