Mouse mammary tumor virus (MMTV) is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. Although mammary glands are the final target of infection, Peyer's patches (PP) are the entry site of the virus. Herein, we show that the infection induces increases in the number of PP IgA B cells and higher expression of the circular transcript, which is a specific marker of the switch to IgA. In addition, IgA B-cell increases correlated with higher levels of cytokines related to IgA class switching, such as interleukin (IL)-5 and IL-6. Of interest, the increases in IgA B cells were lower in Toll-like receptor 4-deficient mice and were completely dependent on the presence of superantigen-reactive T cells. Our results point to a novel mechanism involved in MMTV infection and suggest that IgA B cells may play an important role in carrying the virus to the mammary glands.


Article metrics loading...

Loading full text...

Full text loading...



  1. Acha-Orbea, H., Shakhov, A. N. & Finke, D.(2007). Immune response to MMTV infection. Front Biosci 12, 1594–1609.[CrossRef] [Google Scholar]
  2. Ardavin, C., Martin, P., Ferrero, I., Azcoitia, I., Anjuere, F., Diggelmann, H., Luthi, F., Luther, S. & Acha-Orbea, H.(1999). B cell response after MMTV infection: extrafollicular plasmablasts represent the main infected population and can transmit viral infection. J Immunol 162, 2538–2545. [Google Scholar]
  3. Bergqvist, P., Gärdby, E., Stensson, A., Bemark, M. & Lycke, N. Y.(2006). Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J Immunol 177, 7772–7783.[CrossRef] [Google Scholar]
  4. Beutner, U., McLellan, B., Kraus, E. & Huber, B. T.(1996). Lack of MMTV superantigen presentation in MHC class II-deficient mice. Cell Immunol 168, 141–147.[CrossRef] [Google Scholar]
  5. Burzyn, D., Rassa, J. C., Kim, D., Nepomnaschy, I., Ross, S. R. & Piazzon, I.(2004). Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J Virol 78, 576–584.[CrossRef] [Google Scholar]
  6. Butcher, E. C., Rouse, R. V., Coffman, R. L., Nottenburg, C. N., Hardy, R. R. & Weissman, I. L.(1982). Surface phenotype of Peyer's patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J Immunol 129, 2698–2707. [Google Scholar]
  7. Cabrera, G., Burzyn, D., Mundinano, J., Courreges, M. C., Camicia, G., Lorenzo, D., Costa, H., Ross, S. R., Nepomnaschy, I. & Piazzon, I.(2008). Early increases in superantigen-specific Foxp3+ regulatory T cells during mouse mammary tumor virus infection. J Virol 82, 7422–7431.[CrossRef] [Google Scholar]
  8. Craig, S. W. & Cebra, J. J.(1971). Peyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 134, 188–200.[CrossRef] [Google Scholar]
  9. Czarneski, J., Rassa, J. C. & Ross, S. R.(2003). Mouse mammary tumor virus and the immune system. Immunol Res 27, 469–480.[CrossRef] [Google Scholar]
  10. Dzuris, J. L., Golovkina, T. V. & Ross, S. R.(1997). Both T and B cells shed infectious mouse mammary tumor virus. J Virol 71, 6044–6048. [Google Scholar]
  11. Fagarasan, S.(2008). Evolution, development, mechanism and function of IgA in the gut. Curr Opin Immunol 20, 170–177.[CrossRef] [Google Scholar]
  12. Finke, D., Baribaud, F., Diggelmann, H. & Acha-Orbea, H.(2001). Extrafollicular plasmablast B cells play a key role in carrying retroviral infection to peripheral organs. J Immunol 166, 6266–6275.[CrossRef] [Google Scholar]
  13. Glick, A. B., McCune, B. K., Abdulkarem, N., Flanders, K. C., Lumadue, J. A., Smith, J. M. & Sporn, M. B.(1991). Complex regulation of TGFβ expression by retinoic acid in the vitamin A-deficient rat. Development 111, 1081–1086. [Google Scholar]
  14. Golovkina, T. V., Chervonsky, A., Dudley, J. P. & Ross, S. R.(1992). Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69, 637–645.[CrossRef] [Google Scholar]
  15. Golovkina, T. V., Prescott, J. A. & Ross, S. R.(1993). Mouse mammary tumor virus-induced tumorigenesis in sag transgenic mice: a laboratory model of natural selection. J Virol 67, 7690–7694. [Google Scholar]
  16. Golovkina, T. V., Piazzon, I., Nepomnaschy, I., Buggiano, V., de Olano Vela, M. & Ross, S. R.(1997). Generation of a tumorigenic milk-borne mouse mammary tumor virus by recombination between endogenous and exogenous viruses. J Virol 71, 3895–3903. [Google Scholar]
  17. Golovkina, T. V., Dudley, J. P. & Ross, S. R.(1998). B and T cells are required for mouse mammary tumor virus spread within the mammary gland. J Immunol 161, 2375–2382. [Google Scholar]
  18. Goto, T., Nishizono, A., Fujioka, T., Ikewaki, J., Mifune, K. & Nasu, M.(1999). Local secretory immunoglobulin A and postimmunization gastritis correlate with protection against Helicobacter pylori infection after oral vaccination of mice. Infect Immun 67, 2531–2539. [Google Scholar]
  19. Held, W., Waanders, G. A., Shakhov, A. N., Scarpellino, L., Acha-Orbea, H. & MacDonald, H. R.(1993). Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Cell 74, 529–540.[CrossRef] [Google Scholar]
  20. Held, W., Waanders, G. A., MacDonald, H. R. & Acha-Orbea, H.(1994). MHC class II hierarchy of superantigen presentation predicts efficiency of infection with mouse mammary tumor virus. Int Immunol 6, 1403–1407.[CrossRef] [Google Scholar]
  21. Jude, B. A., Pobezinskaya, Y., Bishop, J., Parke, S., Medzhitov, R. M., Chervonsky, A. V. & Golovkina, T. V.(2003). Subversion of the innate immune system by a retrovirus. Nat Immunol 4, 573–578.[CrossRef] [Google Scholar]
  22. Kaneko, M., Akiyama, Y., Takimoto, H. & Kumazawa, Y.(2005). Mechanism of up-regulation of immunoglobulin A production in the intestine of mice unresponsive to lipopolysaccharide. Immunology 116, 64–70.[CrossRef] [Google Scholar]
  23. Kinoshita, K., Harigai, M., Fagarasan, S., Muramatsu, M. & Honjo, T.(2001). A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. Proc Natl Acad Sci U S A 98, 12620–12623.[CrossRef] [Google Scholar]
  24. Kiyono, H., Babb, J. L., Michalek, S. M. & McGhee, J. R.(1980). Cellular basis for elevated IgA responses in C3H/HeJ mice. J Immunol 125, 732–737. [Google Scholar]
  25. McDermott, M. R. & Bienenstock, J.(1979). Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 122, 1892–1898. [Google Scholar]
  26. McGhee, J. R., Kunisawa, J. & Kiyono, H.(2007). Gut lymphocyte migration: we are halfway ‘home’. Trends Immunol 28, 150–153.[CrossRef] [Google Scholar]
  27. Mora, J. R. & von Andrian, U. H.(2008). Differentiation and homing of IgA-secreting cells. Mucosal Immunol 1, 96–109.[CrossRef] [Google Scholar]
  28. National Research Council(1996).Guide for the Care and Use of Laboratory Animals. Washington, DC. : National Academies Press. [Google Scholar]
  29. Otten, L. A., Finke, D. & Acha-Orbea, H.(2002). Can MMTV exploit TLR4? Trends Microbiol 10, 303–305.[CrossRef] [Google Scholar]
  30. Rassa, J. C., Meyers, J. L., Zhang, Y., Kudaravalli, R. & Ross, S. R.(2002). Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci U S A 99, 2281–2286.[CrossRef] [Google Scholar]
  31. Ross, S. R. R. & Rassa, J. C.(2002). Can MMTV exploit TLR4? Trends Microbiol 10, 303–305.[CrossRef] [Google Scholar]
  32. Van Wauwe, J., Aerts, F., Cools, M., Deroose, F., Freyne, E., Goossens, J., Hermans, B., Lacrampe, J., Van Genechten, H. & other authors(2000). Identification of R146225 as a novel, orally active inhibitor of interleukin-5 biosynthesis. J Pharmacol Exp Ther 295, 655–661. [Google Scholar]
  33. Weisz-Carrington, P., Roux, M. E. & Lamm, M. E.(1977). Plasma cells and epithelial immunoglobulins in the mouse mammary gland during pregnancy and lactation. J Immunol 119, 1306–1307. [Google Scholar]
  34. Youngman, K. R., Franco, M. A., Kuklin, N. A., Rott, L. S., Butcher, E. C. & Greenberg, H. B.(2002). Correlation of tissue distribution, developmental phenotype, and intestinal homing receptor expression of antigen-specific B cells during the murine anti-rotavirus immune response. J Immunol 168, 2173–2181.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error