1887

Abstract

Classical swine fever (CSF) has caused significant economic losses in industrialized pig production, and is still present in some European countries. Recent CSF outbreaks in Europe were mainly associated with strains of genogroup 2 (subgroup 2.3). Although there are extensive datasets regarding 2.3 strains, there is very little information available on longer fragments or whole classical swine fever virus (CSFV) genomes. Furthermore, there are no detailed analyses of the molecular epidemiology of CSFV wild boar isolates available. Nevertheless, complete genome sequences are supportive in phylogenetic analyses, especially in affected wild boar populations. Here, German CSFV strains of subgroup 2.3 were fully sequenced using two different approaches: (i) a universal panel of CSFV primers that were developed to amplify the complete genome in overlapping fragments for chain-terminator sequencing; and (ii) generation of a single full-length amplicon of the CSFV genome obtained by long-range RT-PCR for deep sequencing with next-generation sequencing technology. In total, five different strains of CSFV subgroup 2.3 were completely sequenced using these newly developed protocols. The approach was used to study virus spread and evolutionary history in German wild boar. For the first time, the results of our study clearly argue for the possibility of a long-term persistence of genotype 2.3 CSFV strains in affected regions at an almost undetectable level, even after long-term oral vaccination campaigns with intensive monitoring. Hence, regional persistence in wild boar populations has to be taken into account as an important factor in the continual outbreaks in affected areas.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.023200-0
2010-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/11/2687.html?itemId=/content/journal/jgv/10.1099/vir.0.023200-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F. & Erickson, B. W. ( 1985; ). Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. Mol Biol Evol 2, 526–538.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Anonymous ( 1999; ). Classical swine fever in wild boar. Brussels: European Commission, Directorate-General for Consumer Policy and Consumer Health Protection. XXIV/B3/R09/1999, 1–46.
  4. Bartak, P. & Greiser-Wilke, I. ( 2000; ). Genetic typing of classical swine fever virus isolates from the territory of the Czech Republic. Vet Microbiol 77, 59–70.[CrossRef]
    [Google Scholar]
  5. Becher, P., Orlich, M., Shannon, A. D., Horner, G., König, M. & Thiel, H. J. ( 1997; ). Phylogenetic analysis of pestiviruses from domestic and wild ruminants. J Gen Virol 78, 1357–1366.
    [Google Scholar]
  6. Biagetti, M., Greiser-Wilke, I. & Rutili, D. ( 2001; ). Molecular epidemiology of classical swine fever in Italy. Vet Microbiol 83, 205–215.[CrossRef]
    [Google Scholar]
  7. Bjorklund, H., Lowings, P., Stadejek, T., Vilcek, S., Greiser-Wilke, I., Paton, D. & Belak, S. ( 1999; ). Phylogenetic comparison and molecular epidemiology of classical swine fever virus. Virus Genes 19, 189–195.[CrossRef]
    [Google Scholar]
  8. Blacksell, S. D., Khounsy, S., Boyle, D. B., Greiser-Wilke, I., Gleeson, L. J., Westbury, H. A. & Mackenzie, J. S. ( 2004; ). Phylogenetic analysis of the E2 gene of classical swine fever viruses from Lao PDR. Virus Res 104, 87–92.[CrossRef]
    [Google Scholar]
  9. Cha, S. H., Choi, E. J., Park, J. H., Yoon, S. R., Kwon, J. H., Yoon, K. J. & Song, J. Y. ( 2007; ). Phylogenetic characterization of classical swine fever viruses isolated in Korea between 1988 and 2003. Virus Res 126, 256–261.[CrossRef]
    [Google Scholar]
  10. Depner, K. R., Strebelow, G., Staubach, C., Kramer, M., Teuffert, J., Bötcher, L., Hoffmann, B., Beer, M., Greiser-Wilke, I. & other authors ( 2006; ). Case report: the significance of genotyping for the epidemiological tracing of classical swine fever (CSF). Dtsch Tierarztl Wochenschr 113, 159–162.
    [Google Scholar]
  11. Eckert, K. A. & Kunkel, T. A. ( 1990; ). High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res 18, 3739–3744.[CrossRef]
    [Google Scholar]
  12. Edwards, S., Fukusho, A., Lefevre, P., Lipowski, A., Pejsak, Z., Roehe, P. & Westergaard, J. ( 2000; ). Classical swine fever: the global situation. Vet Microbiol 73, 103–119.[CrossRef]
    [Google Scholar]
  13. Fauquet, C. M. & Fargette, D. ( 2005; ). International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2, 64.[CrossRef]
    [Google Scholar]
  14. Fritzemeier, J., Teuffert, J., Greiser-Wilke, I., Staubach, C., Schlüter, H. & Moennig, V. ( 2000; ). Epidemiology of classical swine fever in Germany in the 1990s. Vet Microbiol 77, 29–41.[CrossRef]
    [Google Scholar]
  15. Greiser-Wilke, I., Depner, K., Fritzemeier, J., Haas, L. & Moennig, V. ( 1998; ). Application of a computer program for genetic typing of classical swine fever virus isolates from Germany. J Virol Methods 75, 141–150.[CrossRef]
    [Google Scholar]
  16. Greiser-Wilke, I., Zimmermann, B., Fritzemeier, J., Floegel, G. & Moennig, V. ( 2000; ). Structure and presentation of a World Wide Web database of CSF virus isolates held at the EU reference laboratory. Vet Microbiol 73, 131–136.[CrossRef]
    [Google Scholar]
  17. Greiser-Wilke, I., Dreier, S., Haas, L. & Zimmermann, B. ( 2006; ). Genetic typing of classical swine fever viruses – a review. Dtsch Tierarztl Wochenschr 113, 134–138.
    [Google Scholar]
  18. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  19. Jemersic, L., Greiser-Wilke, I., Barlic-Maganja, D., Lojkic, M., Madic, J., Terzic, S. & Grom, J. ( 2003; ). Genetic typing of recent classical swine fever virus isolates from Croatia. Vet Microbiol 96, 25–33.[CrossRef]
    [Google Scholar]
  20. Kaden, V., Ziegler, U., Lange, E. & Dedek, J. ( 2000; ). Classical swine fever virus: clinical, virological, serological and hematological findings after infection of domestic pigs and wild boars with the field isolate “Spante” originating from wild boar. Berl Munch Tierarztl Wochenschr 113, 412–416.
    [Google Scholar]
  21. Kaden, V., Lange, E., Polster, U., Klopfleisch, R. & Teifke, J. P. ( 2004; ). Studies on the virulence of two field isolates of the classical swine fever virus genotype 2.3 Rostock in wild boars of different age groups. J Vet Med B Infect Dis Vet Public Health 51, 202–208.[CrossRef]
    [Google Scholar]
  22. Keohavong, P. & Thilly, W. G. ( 1989; ). Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A 86, 9253–9257.[CrossRef]
    [Google Scholar]
  23. Kumar, S., Nei, M., Dudley, J. & Tamura, K. ( 2008; ). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9, 299–306.[CrossRef]
    [Google Scholar]
  24. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors ( 2007; ). clustal w and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef]
    [Google Scholar]
  25. Leifer, I., Depner, K., Blome, S., Le Potier, M. F., Le, D. M., Beer, M. & Hoffmann, B. ( 2009; ). Differentiation of C-strain “Riems” or CP7_E2alf vaccinated animals from animals infected by classical swine fever virus field strains using real-time RT-PCR. J Virol Methods 158, 114–122.[CrossRef]
    [Google Scholar]
  26. Li, X., Xu, Z., He, Y., Yao, Q., Zhang, K., Jin, M., Chen, H. & Qian, P. ( 2006; ). Genome comparison of a novel classical swine fever virus isolated in China in 2004 with other CSFV strains. Virus Genes 33, 133–142.[CrossRef]
    [Google Scholar]
  27. Lowings, P., Ibata, G., De Mia, G. M., Rutili, D. & Paton, D. ( 1999; ). Classical swine fever in Sardinia: epidemiology of recent outbreaks. Epidemiol Infect 122, 553–559.[CrossRef]
    [Google Scholar]
  28. Meyers, G. & Thiel, H. J. ( 1996; ). Molecular characterization of pestiviruses. Adv Virus Res 47, 53–118.
    [Google Scholar]
  29. Moennig, V., Floegel-Niesmann, G. & Greiser-Wilke, I. ( 2003; ). Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J 165, 11–20.[CrossRef]
    [Google Scholar]
  30. Paton, D. J., McGoldrick, A., Greiser-Wilke, I., Parchariyanon, S., Song, J. Y., Liou, P. P., Stadejek, T., Lowings, J. P., Bjorklund, H. & other authors ( 2000; ). Genetic typing of classical swine fever virus. Vet Microbiol 73, 137–157.[CrossRef]
    [Google Scholar]
  31. Pereda, A. J., Greiser-Wilke, I., Schmitt, B., Rincon, M. A., Mogollon, J. D., Sabogal, Z. Y., Lora, A. M., Sanguinetti, H. & Piccone, M. E. ( 2005; ). Phylogenetic analysis of classical swine fever virus (CSFV) field isolates from outbreaks in South and Central America. Virus Res 110, 111–118.[CrossRef]
    [Google Scholar]
  32. Pol, F., Rossi, S., Mesplede, A., Kuntz-Simon, G. & Le Potier, M. F. ( 2008; ). Two outbreaks of classical swine fever in wild boar in France. Vet Rec 162, 811–816.[CrossRef]
    [Google Scholar]
  33. Rasmussen, T. B., Reimann, I., Hoffmann, B., Depner, K., Uttenthal, A. & Beer, M. ( 2008; ). Direct recovery of infectious pestivirus from a full-length RT-PCR amplicon. J Virol Methods 149, 330–333.[CrossRef]
    [Google Scholar]
  34. Rasmussen, T. B., Reimann, I., Uttenthal, A., Leifer, I., Depner, K., Schirrmeier, H. & Beer, M. ( 2010; ). Generation of recombinant pestiviruses using a full-genome amplification strategy. Vet Microbiol 142, 13–17.[CrossRef]
    [Google Scholar]
  35. Rozera, G., Abbate, I., Bruselles, A., Vlassi, C., D'Offizi, G., Narciso, P., Chillemi, G., Prosperi, M., Ippolito, G. & other authors ( 2009; ). Massively parallel pyrosequencing highlights minority variants in the HIV-1 env quasispecies deriving from lymphomonocyte sub-populations. Retrovirology 6, 15.[CrossRef]
    [Google Scholar]
  36. Rümenapf, T., Unger, G., Strauss, J. H. & Thiel, H. J. ( 1993; ). Processing of the envelope glycoproteins of pestiviruses. J Virol 67, 3288–3294.
    [Google Scholar]
  37. Sabogal, Z. Y., Mogollon, J. D., Rincon, M. A. & Clavijo, A. ( 2006; ). Phylogenetic analysis of recent isolates of classical swine fever virus from Colombia. Virus Res 115, 99–103.[CrossRef]
    [Google Scholar]
  38. Sanger, F. & Coulson, A. R. ( 1975; ). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94, 441–448.[CrossRef]
    [Google Scholar]
  39. Stadejek, T., Vilcek, S., Lowings, J. P., Ballagi, P., Paton, D. J. & Belak, S. ( 1997; ). Genetic heterogeneity of classical swine fever virus in Central Europe. Virus Res 52, 195–204.[CrossRef]
    [Google Scholar]
  40. Tautz, N., Meyers, G. & Thiel, H. J. ( 1993; ). Processing of poly-ubiquitin in the polyprotein of an RNA virus. Virology 197, 74–85.[CrossRef]
    [Google Scholar]
  41. Tautz, N., Elbers, K., Stoll, D., Meyers, G. & Thiel, H. J. ( 1997; ). Serine protease of pestiviruses: determination of cleavage sites. J Virol 71, 5415–5422.
    [Google Scholar]
  42. Thiel, H. J., Rümenapf, T., Meyers, G. & Stark, R. ( 1989; ). Molecular characterization of the hog cholera virus. Berl Munch Tierarztl Wochenschr 102, 378–381.
    [Google Scholar]
  43. Thulke, H. H., Eisinger, D., Freuling, C., Fröhlich, A., Globig, A., Grimm, V., Müller, T., Selhorst, T., Staubach, C. & other authors ( 2009; ). Situation-based surveillance: adapting investigations to actual epidemic situations. J Wildl Dis 45, 1089–1103.[CrossRef]
    [Google Scholar]
  44. Tindall, K. R. & Kunkel, T. A. ( 1988; ). Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27, 6008–6013.[CrossRef]
    [Google Scholar]
  45. Tu, C., Lu, Z., Li, H., Yu, X., Liu, X., Li, Y., Zhang, H. & Yin, Z. ( 2001; ). Phylogenetic comparison of classical swine fever virus in China. Virus Res 81, 29–37.[CrossRef]
    [Google Scholar]
  46. Vilcek, S., Stadejek, T., Takacsova, I., Strojny, L. & Mojzis, M. ( 1997; ). Genetic analysis of classical swine fever virus isolates from a small geographic area. Dtsch Tierarztl Wochenschr 104, 9–12.
    [Google Scholar]
  47. Vlasova, A., Grebennikova, T., Zaberezhny, A., Greiser-Wilke, I., Floegel-Niesmann, G., Kurinnov, V., Aliper, T. & Nepoklonov, E. ( 2003; ). Molecular epidemiology of classical swine fever in the Russian Federation. J Vet Med B Infect Dis Vet Public Health 50, 363–367.[CrossRef]
    [Google Scholar]
  48. von Rüden, S., Staubach, C., Kaden, V., Hess, R. G., Blicke, J., Kühne, S., Sonnenburg, J., Fröhlich, A., Teuffert, J. & other authors ( 2008; ). Retrospective analysis of the oral immunisation of wild boar populations against classical swine fever virus (CSFV) in region Eifel of Rhineland-Palatinate. Vet Microbiol 132, 29–38.[CrossRef]
    [Google Scholar]
  49. Wegelt, A., Reimann, I., Zemke, J. & Beer, M. ( 2009; ). New insights into processing of bovine viral diarrhea virus glycoproteins Erns and E1. J Gen Virol 90, 2462–2467.[CrossRef]
    [Google Scholar]
  50. Wiley, G., Macmil, S., Qu, C., Wang, P., Xing, Y., White, D., Li, J., White, J. D., Domingo, A. & Roe, B. A. ( 2009; ). Methods for generating shotgun and mixed shotgun/paired-end libraries for the 454 DNA sequencer. Curr Protoc Hum Genet Chapter 18, t18.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.023200-0
Loading
/content/journal/jgv/10.1099/vir.0.023200-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2687–2697

CSFV-specific primers used for the different sequencing protocols [ PDF] (62 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error