1887

Abstract

Based on sequencing data, norovirus (NoV) recombinants have been described, but no experimental evidence of recombination in NoVs has been documented. Using the murine norovirus (MNV) model, we investigated the occurrence of genetic recombination between two co-infecting wild-type MNV isolates in RAW cells. The design of a PCR-based genotyping tool allowed accurate discrimination between the parental genomes and the detection of a viable recombinant MNV (Rec MNV) in the progeny viruses. Genetic analysis of Rec MNV identified a homologous-recombination event located at the ORF1–ORF2 overlap. Rec MNV exhibited distinct growth curves and produced smaller plaques than the wild-type MNV in RAW cells. Here, we demonstrate experimentally that MNV undergoes homologous recombination at the previously described recombination hot spot for NoVs, suggesting that the MNV model might be suitable for studies of NoV recombination. Moreover, the results show that exchange of genetic material between NoVs can generate viruses with distinct biological properties from the parental viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.024109-0
2010-11-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/11/2723.html?itemId=/content/journal/jgv/10.1099/vir.0.024109-0&mimeType=html&fmt=ahah

References

  1. Ambert-Balay, K., Bon, F., Le Guyader, F., Pothier, P. & Kohli, E. ( 2005; ). Characterization of new recombinant noroviruses. J Clin Microbiol 43, 5179–5186.[CrossRef]
    [Google Scholar]
  2. Bruggink, L. D. & Marshall, J. A. ( 2009; ). Molecular and epidemiological features of GIIb norovirus outbreaks in Victoria, Australia, 2002–2005. J Med Virol 81, 1652–1660.[CrossRef]
    [Google Scholar]
  3. Bull, R. A., Hansman, G. S., Clancy, L. E., Tanaka, M. M., Rawlinson, W. D. & White, P. A. ( 2005; ). Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis 11, 1079–1085.[CrossRef]
    [Google Scholar]
  4. Bull, R. A., Tanaka, M. M. & White, P. A. ( 2007; ). Norovirus recombination. J Gen Virol 88, 3347–3359.[CrossRef]
    [Google Scholar]
  5. Chuang, C. K. & Chen, W. J. ( 2009; ). Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus. Virology 394, 286–297.[CrossRef]
    [Google Scholar]
  6. Cooper, P. D. ( 1968; ). A genetic map of poliovirus temperature-sensitive mutants. Virology 35, 584–596.[CrossRef]
    [Google Scholar]
  7. Coyne, K. P., Reed, F. C., Porter, C. J., Dawson, S., Gaskell, R. M. & Radford, A. D. ( 2006; ). Recombination of Feline calicivirus within an endemically infected cat colony. J Gen Virol 87, 921–926.[CrossRef]
    [Google Scholar]
  8. Fan, J., Negroni, M. & Robertson, D. L. ( 2007; ). The distribution of HIV-1 recombination breakpoints. Infect Genet Evol 7, 717–723.[CrossRef]
    [Google Scholar]
  9. Fukuda, S., Sasaki, Y., Takao, S. & Seno, M. ( 2008; ). Recombinant norovirus implicated in gastroenteritis outbreaks in Hiroshima Prefecture, Japan. J Med Virol 80, 921–928.[CrossRef]
    [Google Scholar]
  10. Giraudo, A. T., Gomes, I., de Mello, P. A., Beck, E., La Torre, J. L., Scodeller, E. A. & Bergmann, I. E. ( 1988; ). Behavior of intertypic recombinants between virulent and attenuated aphthovirus strains in tissue culture and cattle. J Virol 62, 3789–3794.
    [Google Scholar]
  11. Gomes, K. A., Stupka, J. A., Gomez, J. & Parra, G. I. ( 2007; ). Molecular characterization of calicivirus strains detected in outbreaks of gastroenteritis in Argentina. J Med Virol 79, 1703–1709.[CrossRef]
    [Google Scholar]
  12. Hall, T. A. ( 1999; ). BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  13. Hansman, G. S., Takeda, N., Oka, T., Oseto, M., Hedlund, K. O. & Katayama, K. ( 2005; ). Intergenogroup recombination in sapoviruses. Emerg Infect Dis 11, 1916–1920.
    [Google Scholar]
  14. Hyde, J. L., Sosnovtsev, S. V., Green, K. Y., Wobus, C., Virgin, H. W., IV & Mackenzie, J. M. ( 2009; ). Mouse norovirus replication is associated with virus-induced vesicle clusters originating from membranes derived from the secretory pathway. J Virol 83, 9709–9719.[CrossRef]
    [Google Scholar]
  15. Jiang, X., Espul, C., Zhong, W. M., Cuello, H. & Matson, D. O. ( 1999; ). Characterization of a novel human calicivirus that may be a naturally occurring recombinant. Arch Virol 144, 2377–2387.[CrossRef]
    [Google Scholar]
  16. Karst, S. M., Wobus, C. E., Lay, M., Davidson, J. & Virgin, H. W., IV ( 2003; ). STAT1-dependent innate immunity to a Norwalk-like virus. Science 299, 1575–1578.[CrossRef]
    [Google Scholar]
  17. Kirkegaard, K. & Baltimore, D. ( 1986; ). The mechanism of RNA recombination in poliovirus. Cell 47, 433–443.[CrossRef]
    [Google Scholar]
  18. Lai, M. M. ( 1992; ). RNA recombination in animal and plant viruses. Microbiol Rev 56, 61–79.
    [Google Scholar]
  19. Larsen, F., Gundersen, G., Lopez, R. & Prydz, H. ( 1992; ). CpG islands as gene markers in the human genome. Genomics 13, 1095–1107.[CrossRef]
    [Google Scholar]
  20. Lilliefors, H. W. ( 1967; ). On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62, 399–402.[CrossRef]
    [Google Scholar]
  21. Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W. & Ray, S. C. ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152–160.
    [Google Scholar]
  22. Martella, V., Campolo, M., Lorusso, E., Cavicchio, P., Camero, M., Bellacicco, A. L., Decaro, N., Elia, G., Greco, G. & other authors ( 2007; ). Norovirus in captive lion cub (Panthera leo). Emerg Infect Dis 13, 1071–1073.[CrossRef]
    [Google Scholar]
  23. Martella, V., Lorusso, E., Decaro, N., Elia, G., Radogna, A., D'Abramo, M., Desario, C., Cavalli, A., Corrente, M. & other authors ( 2008; ). Detection and molecular characterization of a canine norovirus. Emerg Infect Dis 14, 1306–1308.[CrossRef]
    [Google Scholar]
  24. Martella, V., Decaro, N., Lorusso, E., Radogna, A., Moschidou, P., Amorisco, F., Lucente, M. S., Desario, C., Mari, V. & other authors ( 2009; ). Genetic heterogeneity and recombination in canine noroviruses. J Virol 83, 11391–11396.[CrossRef]
    [Google Scholar]
  25. Martin, D. P., van der Walt, E., Posada, D. & Rybicki, E. P. ( 2005; ). The evolutionary value of recombination is constrained by genome modularity. PLoS Genet 1, e51.[CrossRef]
    [Google Scholar]
  26. Mauroy, A., Scipioni, A., Mathijs, E., Thys, C. & Thiry, E. ( 2009; ). Molecular detection of kobuviruses and recombinant noroviruses in cattle in continental Europe. Arch Virol 154, 1841–1845.[CrossRef]
    [Google Scholar]
  27. McCahon, D. & Slade, W. R. ( 1981; ). A sensitive method for the detection and isolation of recombinants of foot-and-mouth disease virus. J Gen Virol 53, 333–342.[CrossRef]
    [Google Scholar]
  28. Meurens, F., Keil, G. M., Muylkens, B., Gogev, S., Schynts, F., Negro, S., Wiggers, L. & Thiry, E. ( 2004; ). Interspecific recombination between two ruminant alphaherpesviruses, bovine herpesviruses 1 and 5. J Virol 78, 9828–9836.[CrossRef]
    [Google Scholar]
  29. Muylkens, B., Meurens, F., Schynts, F., de Fays, K., Pourchet, A., Thiry, J., Vanderplasschen, A., Antoine, N. & Thiry, E. ( 2006; ). Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype. Vet Microbiol 113, 283–291.[CrossRef]
    [Google Scholar]
  30. Muylkens, B., Farnir, F., Meurens, F., Schynts, F., Vanderplasschen, A., Georges, M. & Thiry, E. ( 2009; ). Coinfection with two closely related alphaherpesviruses results in a highly diversified recombination mosaic displaying negative genetic interference. J Virol 83, 3127–3137.[CrossRef]
    [Google Scholar]
  31. Nagy, P. D. & Simon, A. E. ( 1997; ). New insights into the mechanisms of RNA recombination. Virology 235, 1–9.[CrossRef]
    [Google Scholar]
  32. Reuter, G., Vennema, H., Koopmans, M. & Szucs, G. ( 2006; ). Epidemic spread of recombinant noroviruses with four capsid types in Hungary. J Clin Virol 35, 84–88.[CrossRef]
    [Google Scholar]
  33. Scipioni, A., Mauroy, A., Vinje, J. & Thiry, E. ( 2008; ). Animal noroviruses. Vet J 178, 32–45.[CrossRef]
    [Google Scholar]
  34. Simmonds, P., Karakasiliotis, I., Bailey, D., Chaudhry, Y., Evans, D. J. & Goodfellow, I. G. ( 2008; ). Bioinformatic and functional analysis of RNA secondary structure elements among different genera of human and animal caliciviruses. Nucleic Acids Res 36, 2530–2546.[CrossRef]
    [Google Scholar]
  35. Sosnovtsev, S. V., Belliot, G., Chang, K. O., Prikhodko, V. G., Thackray, L. B., Wobus, C. E., Karst, S. M., Virgin, H. W., IV & Green, K. Y. ( 2006; ). Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 80, 7816–7831.[CrossRef]
    [Google Scholar]
  36. Spann, K. M., Collins, P. L. & Teng, M. N. ( 2003; ). Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J Virol 77, 11201–11211.[CrossRef]
    [Google Scholar]
  37. Thackray, L. B., Wobus, C. E., Chachu, K. A., Liu, B., Alegre, E. R., Henderson, K. S., Kelley, S. T. & Virgin, H. W., IV ( 2007; ). Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81, 10460–10473.[CrossRef]
    [Google Scholar]
  38. Thiry, E., Meurens, F., Muylkens, B., McVoy, M., Gogev, S., Thiry, J., Vanderplasschen, A., Epstein, A., Keil, G. & Schynts, F. ( 2005; ). Recombination in alphaherpesviruses. Rev Med Virol 15, 89–103.[CrossRef]
    [Google Scholar]
  39. Tolskaya, E. A., Romanova, L. I., Blinov, V. M., Viktorova, E. G., Sinyakov, A. N., Kolesnikova, M. S. & Agol, V. I. ( 1987; ). Studies on the recombination between RNA genomes of poliovirus: the primary structure and nonrandom distribution of crossover regions in the genomes of intertypic poliovirus recombinants. Virology 161, 54–61.[CrossRef]
    [Google Scholar]
  40. Vende, P., Le Gall, G. & Rasschaert, D. ( 1995; ). An alternative method for direct sequencing of PCR products, for epidemiological studies performed by nucleic sequence comparison. Application to rabbit haemorrhagic disease virus. Vet Res 26, 174–179.
    [Google Scholar]
  41. Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K. O., Sosnovtsev, S. V., Belliot, G., Krug, A., Mackenzie, J. M., Green, K. Y. & Virgin, H. W., IV ( 2004; ). Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2, e432.[CrossRef]
    [Google Scholar]
  42. Wobus, C. E., Thackray, L. B. & Virgin, H. W., IV ( 2006; ). Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80, 5104–5112.[CrossRef]
    [Google Scholar]
  43. Worobey, M. & Holmes, E. C. ( 1999; ). Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80, 2535–2543.
    [Google Scholar]
  44. Zheng, D. P., Ando, T., Fankhauser, R. L., Beard, R. S., Glass, R. I. & Monroe, S. S. ( 2006; ). Norovirus classification and proposed strain nomenclature. Virology 346, 312–323.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.024109-0
Loading
/content/journal/jgv/10.1099/vir.0.024109-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2723–2733

Primers and probes used in the TaqMan-based discriminative PCR distinguishing between MNV-1 and WU20 [ PDF] (72 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error