Proteolytic cleavage of haemagglutinin (HA) is essential for the infectivity of influenza A viruses (IAVs). This is usually mediated by trypsin-like proteases present in the respiratory tract. However, the ability to use plasminogen (PLG) as an alternative protease may contribute to pathogenesis of IAV infections and virus replication outside the respiratory tract. It was demonstrated previously that neuraminidase (NA) of the IAV strain A/WSN/33 can sequester PLG, allowing this virus to replicate in a PLG-dependent fashion. However, PLG also promotes replication of other IAVs, although its mode of action is poorly understood. Here, using NA-deficient viruses, we demonstrate that NA is not required for the binding of PLG and subsequent cleavage of HA. However, we demonstrate that the cellular protein annexin 2 (A2) can bind PLG and contributes to PLG-dependent cleavage of HA and subsequent IAV replication. Collectively, these results indicate that PLG promotes IAV replication in an A2-dependent fashion in the absence of NA.


Article metrics loading...

Loading full text...

Full text loading...



  1. Adrián Cabestré, F., Moreau, P., Riteau, B., Ibrahim, E. C., Le Danff, C., Dausset, J., Rouas-Freiss, N., Carosella, E. D. & Paul, P.(1999). HLA-G expression in human melanoma cells: protection from NK cytolysis. J Reprod Immunol 43, 183–193.[CrossRef] [Google Scholar]
  2. Balasubramanian, K., Bevers, E. M., Willems, G. M. & Schroit, A. J.(2001). Binding of annexin V to membrane products of lipid peroxidation. Biochemistry 40, 8672–8676.[CrossRef] [Google Scholar]
  3. Bernard, D., Riteau, B., Hansen, J. D., Phillips, R. B., Michel, F., Boudinot, P. & Benmansour, A.(2006). Costimulatory receptors in a teleost fish: typical CD28, elusive CTLA4. J Immunol 176, 4191–4200.[CrossRef] [Google Scholar]
  4. Bottcher, E., Matrosovich, T., Beyerle, M., Klenk, H. D., Garten, W. & Matrosovich, M.(2006). Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80, 9896–9898.[CrossRef] [Google Scholar]
  5. Chaipan, C., Kobasa, D., Bertram, S., Glowacka, I., Steffen, I., Tsegaye, T. S., Takeda, M., Bugge, T. H., Kim, S. & other authors(2009). Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol 83, 3200–3211.[CrossRef] [Google Scholar]
  6. Conenello, G. M., Zamarin, D., Perrone, L. A., Tumpey, T. & Palese, P.(2007). A single mutation in the PB1–F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3, 1414–1421. [Google Scholar]
  7. de Jong, M. D., Simmons, C. P., Thanh, T. T., Hien, V. M., Smith, G. J., Chau, T. N., Hoang, D. M., Chau, N. V., Khanh, T. H. & other authors(2006). Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12, 1203–1207.[CrossRef] [Google Scholar]
  8. Derry, M. C., Sutherland, M. R., Restall, C. M., Waisman, D. M. & Pryzdial, E. L.(2007). Annexin 2-mediated enhancement of cytomegalovirus infection opposes inhibition by annexin 1 or annexin 5. J Gen Virol 88, 19–27.[CrossRef] [Google Scholar]
  9. Favier, R., Aoki, N. & de Moerloose, P.(2001). Congenital alpha2-plasmin inhibitor deficiencies: a review. Br J Haematol 114, 4–10.[CrossRef] [Google Scholar]
  10. Fislova, T., Gocnik, M., Sladkova, T., Durmanova, V., Rajcani, J., Vareckova, E., Mucha, V. & Kostolansky, F.(2009). Multiorgan distribution of human influenza A virus strains observed in a mouse model. Arch Virol 154, 409–419.[CrossRef] [Google Scholar]
  11. Garcia-Sastre, A.(2006). Antiviral response in pandemic influenza viruses. Emerg Infect Dis 12, 44–47.[CrossRef] [Google Scholar]
  12. Gonzalez-Reyes, S., Garcia-Manso, A., del Barrio, G., Dalton, K. P., Gonzalez-Molleda, L., Arrojo-Fernandez, J., Nicieza, I. & Parra, F.(2009). Role of annexin A2 in cellular entry of rabbit vesivirus. J Gen Virol 90, 2724–2730.[CrossRef] [Google Scholar]
  13. Goto, H. & Kawaoka, Y.(1998). A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci U S A 95, 10224–10228.[CrossRef] [Google Scholar]
  14. Goto, H., Wells, K., Takada, A. & Kawaoka, Y.(2001). Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. J Virol 75, 9297–9301.[CrossRef] [Google Scholar]
  15. Hajjar, K. A.(1991). The endothelial cell tissue plasminogen activator receptor. Specific interaction with plasminogen. J Biol Chem 266, 21962–21970. [Google Scholar]
  16. Hajjar, K. A. & Krishnan, S.(1999). Annexin II: a mediator of the plasmin/plasminogen activator system. Trends Cardiovasc Med 9, 128–138.[CrossRef] [Google Scholar]
  17. Harrist, A. V., Ryzhova, E. V., Harvey, T. & Gonzalez-Scarano, F.(2009). Anx2 interacts with HIV-1 Gag at phosphatidylinositol (4,5) bisphosphate-containing lipid rafts and increases viral production in 293T cells. PLoS One 4, e5020.[CrossRef] [Google Scholar]
  18. Hartshorn, K. L., Collamer, M., Auerbach, M., Myers, J. B., Pavlotsky, N. & Tauber, A. I.(1988). Effects of influenza A virus on human neutrophil calcium metabolism. J Immunol 141, 1295–1301. [Google Scholar]
  19. Khalil-Daher, I., Riteau, B., Menier, C., Sedlik, C., Paul, P., Dausset, J., Carosella, E. D. & Rouas-Freiss, N.(1999). Role of HLA-G versus HLA-E on NK function: HLA-G is able to inhibit NK cytolysis by itself. J Reprod Immunol 43, 175–182.[CrossRef] [Google Scholar]
  20. Khoufache, K., LeBouder, F., Morello, E., Laurent, F., Riffault, S., Andrade-Gordon, P., Boullier, S., Rousset, P., Vergnolle, N. & Riteau, B.(2009). Protective role for protease-activated receptor-2 against influenza virus pathogenesis via an IFN-γ-dependent pathway. J Immunol 182, 7795–7802.[CrossRef] [Google Scholar]
  21. Klenk, H. D. & Garten, W.(1994). Host cell proteases controlling virus pathogenicity. Trends Microbiol 2, 39–43.[CrossRef] [Google Scholar]
  22. Kwon, M., MacLeod, T. J., Zhang, Y. & Waisman, D. M.(2005). S100A10, annexin A2, and annexin A2 heterotetramer as candidate plasminogen receptors. Front Biosci 10, 300–325.[CrossRef] [Google Scholar]
  23. LeBouder, F., Morello, E., Rimmelzwaan, G. F., Bosse, F., Pechoux, C., Delmas, B. & Riteau, B.(2008). Annexin II incorporated into influenza virus particles supports virus replication by converting plasminogen into plasmin. J Virol 82, 6820–6828.[CrossRef] [Google Scholar]
  24. LeBouder, F., Khoufache, K., Menier, C., Mandouri, Y., Keffous, M., Lejal, N., Krawice-Radanne, I., Carosella, E. D., Rouas-Freiss, N. & Riteau, B.(2009). Immunosuppressive HLA-G molecule is upregulated in alveolar epithelial cells after influenza A virus infection. Hum Immunol 70, 1016–1019.[CrossRef] [Google Scholar]
  25. Le Gal, F. A., Riteau, B., Sedlik, C., Khalil-Daher, I., Menier, C., Dausset, J., Guillet, J. G., Carosella, E. D. & Rouas-Freiss, N.(1999). HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 11, 1351–1356.[CrossRef] [Google Scholar]
  26. Li, S., Schulman, J., Itamura, S. & Palese, P.(1993). Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol 67, 6667–6673. [Google Scholar]
  27. Menier, C., Riteau, B., Dausset, J., Carosella, E. D. & Rouas-Freiss, N.(2000). HLA-G truncated isoforms can substitute for HLA-G1 in fetal survival. Hum Immunol 61, 1118–1125.[CrossRef] [Google Scholar]
  28. Mizuguchi, M.(2006). Influenza encephalopathy and Reye's syndrome. Nippon Naika Gakkai Zasshi 95, 1263–1267 (in Japanese).[CrossRef] [Google Scholar]
  29. Pascale, F., Contreras, V., Bonneau, M., Courbet, A., Chilmonczyk, S., Bevilacqua, C., Eparaud, M., Niborski, V., Riffault, S. & other authors(2008). Plasmacytoid dendritic cells migrate in afferent skin lymph. J Immunol 180, 5963–5972.[CrossRef] [Google Scholar]
  30. Rescher, U. & Gerke, V.(2004). Annexins – unique membrane binding proteins with diverse functions. J Cell Sci 117, 2631–2639.[CrossRef] [Google Scholar]
  31. Rimmelzwaan, G. F., Nieuwkoop, N. J., de Mutsert, G., Boon, A. C., Kuiken, T., Fouchier, R. A. & Osterhaus, A. D.(2007). Attachment of infectious influenza A viruses of various subtypes to live mammalian and avian cells as measured by flow cytometry. Virus Res 129, 175–181.[CrossRef] [Google Scholar]
  32. Riteau, B., Menier, C., Khalil-Daher, I., Sedlik, C., Dausset, J., Rouas-Freiss, N. & Carosella, E. D.(1999). HLA-G inhibits the allogeneic proliferative response. J Reprod Immunol 43, 203–211.[CrossRef] [Google Scholar]
  33. Riteau, B., Menier, C., Khalil-Daher, I., Martinozzi, S., Pla, M., Dausset, J., Carosella, E. D. & Rouas-Freiss, N.(2001a). HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. Int Immunol 13, 193–201.[CrossRef] [Google Scholar]
  34. Riteau, B., Moreau, P., Menier, C., Khalil-Daher, I., Khosrotehrani, K., Bras-Goncalves, R., Paul, P., Dausset, J., Rouas-Freiss, N. & Carosella, E. D.(2001b). Characterization of HLA-G1, -G2, -G3, and -G4 isoforms transfected in a human melanoma cell line. Transplant Proc 33, 2360–2364.[CrossRef] [Google Scholar]
  35. Riteau, B., Rouas-Freiss, N., Menier, C., Paul, P., Dausset, J. & Carosella, E. D.(2001c). HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol 166, 5018–5026.[CrossRef] [Google Scholar]
  36. Riteau, B., Barber, D. F. & Long, E. O.(2003a). Vav1 phosphorylation is induced by β2 integrin engagement on natural killer cells upstream of actin cytoskeleton and lipid raft reorganization. J Exp Med 198, 469–474.[CrossRef] [Google Scholar]
  37. Riteau, B., Faure, F., Menier, C., Viel, S., Carosella, E. D., Amigorena, S. & Rouas-Freiss, N.(2003b). Exosomes bearing HLA-G are released by melanoma cells. Hum Immunol 64, 1064–1072.[CrossRef] [Google Scholar]
  38. Riteau, B., de Vaureix, C. & Lefevre, F.(2006). Trypsin increases pseudorabies virus production through activation of the ERK signalling pathway. J Gen Virol 87, 1109–1112.[CrossRef] [Google Scholar]
  39. Rogers, G. N., Paulson, J. C., Daniels, R. S., Skehel, J. J., Wilson, I. A. & Wiley, D. C.(1983). Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304, 76–78.[CrossRef] [Google Scholar]
  40. Ryzhova, E. V., Vos, R. M., Albright, A. V., Harrist, A. V., Harvey, T. & Gonzalez-Scarano, F.(2006). Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J Virol 80, 2694–2704.[CrossRef] [Google Scholar]
  41. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N. & Kawaoka, Y.(2006). Avian flu: influenza virus receptors in the human airway. Nature 440, 435–436.[CrossRef] [Google Scholar]
  42. Steinhauer, D. A.(1999). Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258, 1–20.[CrossRef] [Google Scholar]
  43. Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solorzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K. & other authors(2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80.[CrossRef] [Google Scholar]
  44. van Riel, D., Munster, V. J., de Wit, E., Rimmelzwaan, G. F., Fouchier, R. A., Osterhaus, A. D. & Kuiken, T.(2006). H5N1 virus attachment to lower respiratory tract. Science 312, 399.[CrossRef] [Google Scholar]
  45. Yen, H. L., Aldridge, J. R., Boon, A. C., Ilyushina, N. A., Salomon, R., Hulse-Post, D. J., Marjuki, H., Franks, J., Boltz, D. A. & other authors(2009). Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci U S A 106, 286–291.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error