-
Volume 73,
Issue 5,
2023
Volume 73, Issue 5, 2023
- New Taxa
-
- Bacteroidota
-
-
Gramella oceanisediminis sp. nov., isolated from deep-sea sediment of the Indian Ocean
More LessA taxonomic study was carried out on strain GC03-9T, which was isolated from deep-sea sediment of the Indian Ocean. The bacterium was Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped and gliding motile. Growth was observed at salinities of 0–9 % and at temperatures of 10–42 °C. The isolate could degrade gelatin and aesculin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GC03-9T belonged to the genus Gramella , with the highest sequence similarity to Gramella bathymodioli JCM 33424T (97.9 %), followed by Gramella jeungdoensis KCTC 23123T (97.2 %) and other species of the genus Gramella (93.4–96.3 %). The average nucleotide identity and the digital DNA–DNA hybridization estimate values between strain GC03-9T and G. bathymodioli JCM 33424T and G. jeungdoensis KCTC 23123T were 25.1 and 18.7 % and 82.47 and 75.69 %, respectively. The principal fatty acids were iso-C15 : 0 (28.0 %), iso-C17 : 0 3OH (13.4 %), summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0; 13.3 %) and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 11.0 %). The G+C content of the chromosomal DNA was 41.17 mol%. The respiratory quinone was determined to be menaquinone-6 (100 %). Phosphatidylethanolamine, one unknown phospholipid, three unknown aminolipids and two unknown polar lipids were present. The combined genotypic and phenotypic data showed that strain GC03-9T represents a novel species within the genus Gramella , for which the name Gramella oceanisediminis sp. nov. is proposed, with the type strain GC03-9T (=MCCC M25440T=KCTC 92235T).
-
-
-
Pedobacter montanisoli sp. nov., isolated from soil
More LessA white-pigmented, non-motile, Gram-stain-negative, rod-shaped bacterium, designated CYS-01T, was obtained from soil sampled at Suwon, Gyeonggi-do, Republic of Korea. Cells were strictly aerobic, grew optimally at 28 °C. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain CYS-01T formed a lineage within the family Sphingobacteriaceae and clustered with members of the genus Pedobacter . The closest relatives were Pedobacter xixiisoli CGMCC 1.12803T (95.70 % sequence similarity), Pedobacter ureilyticus THG-T11T (95.35 %), Pedobacter helvus P-25T (95.28 %), Pedobacter chitinilyticus CM134L-2T (94.94 %), Pedobacter nanyangensis Q-4T (94.73 %) and Pedobacter zeaxanthinifaciens TDMA-5T (94.07 %). The principal respiratory quinone was MK-7 and the major polar lipids were phosphatidylethanolamine, an unidentified aminolipid, unidentified lipids and an unidentified glycolipid. The predominant cellular fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C17 : 0 3-OH. The DNA G+C content was 36.6 mol%. Based on the results of genomic, chemotaxonomic, phenotypic and phylogenetic analyses, strain CYS-01T represents novel species in the genus Pedobacter , for which the name Pedobacter montanisoli sp. nov. is proposed. The type strain is CYS-01T (=KACC 22655T=NBRC 115630T).
-
-
-
Massilia agrisoli sp. nov., isolated from rhizospheric soil of banana
A Gram-stain-negative, aerobic, short rod-shaped and motile novel bacterial strain, designated MAHUQ-52T, was isolated from the rhizospheric soil of a banana plant. Colonies grew at 10–35 °C (optimum, 28 °C), pH 6.0–9.5 (optimum, pH 7.0–7.5), and in the presence of 0–1.0 % NaCl (optimum 0 %). The strain was positive for catalase and oxidase tests, as well as hydrolysis of gelatin, casein, starch and Tween 20. Based on the results of phylogenetic analysis using 16S rRNA gene and genome sequences, strain MAHUQ-52T clustered together within the genus Massilia . Strain MAHUQ-52T was closely related to Massilia soli R798T (98.6 %) and Massilia polaris RP-1-19T (98.3 %). The novel strain MAHUQ-52T has a draft genome size of 4 677 454 bp (25 contigs), annotated with 4193 protein-coding genes, 64 tRNA and 19 rRNA genes. The genomic DNA G+C content was 63.0 %. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain MAHUQ-52T and closely related type strains were ≤88.4 and 35.8 %, respectively. The only respiratory quinone was ubiquinone-8. The major fatty acids were identified as C16 : 0 and summed feature 3 (C15 : 0 iso 2-OH and/or C16 : 1 ω7c). Strain MAHUQ-52T contained phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. On the basis of dDDH and ANI values, as well as genotypic, chemotaxonomic and physiological data, strain MAHUQ-52T represents a novel species within the genus Massilia , for which the name Massilia agrisoli sp. nov. is proposed, with MAHUQ-52T (=KACC 21999T=CGMCC 1.18577T) as the type strain.
-
-
-
Flavobacterium lacisediminis sp. nov., a bacterium isolated from lake sediment
More LessA taxonomic identification using polyphasic approach was performed on strain TH16-21T, which was isolated from the interfacial sediment of Taihu Lake, PR China. Strain TH16-21T was Gram-stain-negative, aerobic, rod-shaped and catalase-positive. Phylogenetic analysis based on the 16S rRNA gene and genomic sequences indicated that strain TH16-21T was classified within the genus of Flavobacterium . The 16S rRNA gene sequence of strain TH16-21T showed the highest similarity to Flavobacterium cheniae NJ-26T (98.9 %). The average nucleotide identity and digital DNA–DNA hybridization values between strain TH16-21T and F. cheniae NJ-26T were 91.2 and 45.9 %, respectively. The respiratory quinone was menaquinone 6. The major cellular fatty acids (>10 %) comprised iso-C15 : 0, iso-C16 : 0, iso-C15 : 1 G and iso-C16 : 0 3-OH. The genomic DNA G+C content was 32.2 mol%. Phosphatidylethanolamine, six amino lipids and three phospholipids were the main polar lipids. Based on the phenotypic features and phylogenetic position, a novel species with the name Flavobacterium lacisediminis sp. nov. is proposed. The type strain is TH16-21T (=MCCC 1K04592T=KACC 22896T).
-
- Bacillota
-
-
Collibacillus ludicampi gen. nov., sp. nov., a new soil bacterium of the family Alicyclobacillaceae
More LessA novel moderately thermophilic aerobic bacterium, strain TP075T, was isolated from soil collected from an athletic field in Japan. Strain TP075T is a rod-shaped, aerobic bacterium that forms terminal endospores. The KOH lysis test suggested that the cell wall of the isolate has a Gram-positive structure. For aerobic growth, the optimum pH and temperature were 4.0–5.0 and 47–50 °C, respectively. Draft genome sequencing showed that the G+C content of genomic DNA was 46.5 mol%. Branched-chain fatty acids (iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0) were the major components of the cellular fatty acid profile. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain TP075T belongs to the family Alicyclobacillaceae , with the highest similarity to Effusibacillus consociatus CCUG53762T (92.6%) and Tumebacillus soil CAU11108T (92.5%). Genome-based analyses indicated that strain TP075T and the most closely related strain, Effusibacillus pohliae DSM 22757T, share an average amino acid identity value of 62.57% and an average nucleotide identity value of 70.86 %. The results obtained in this study suggest that strain TP075T represents a novel species of a novel genus, for which we propose the name Collibacillus ludicampi gen. nov., sp. nov. with type strain TP075T (= JCM 34430T=TBRC 15189T).
-
-
-
Aristaeella hokkaidonensis gen. nov. sp. nov. and Aristaeella lactis sp. nov., two rumen bacterial species of a novel proposed family, Aristaeellaceae fam. nov.
Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order ‘Christensenellales’, were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6–99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order ‘Christensenellales’. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.
-
-
-
Lederbergia citrea sp. nov., isolated from citrus rhizosphere
More LessThree Gram-positive-staining strains FJAT-49754T, FJAT-49682 and FJAT-49731 were isolated from the citrus rhizosphere soil sample. These strains showed the highest 16S rRNA gene sequence similarity with the type strain of Lederbergia panacisoli (97.8–97.9 %). The 16S rRNA gene sequence similarities between strains FJAT-49754T, FJAT-49682, and FJAT-49731 were 99.9 %. The average nucleotide identity (ANI) values between strains FJAT-49754T, FJAT-49682 and FJAT-49731 were above 96 %, while the ANI values with the members of the genus Lederbergia were below 95 %, which were below the cut-off level for prokaryotic species delineation. The above results suggest that strains FJAT-49754T, FJAT-49682 and FJAT-49731 belong to a novel species of the genus Lederbergia . Growth of strain FJAT-49754T was observed at 10–40 °C (optimum at 30 °C, pH 6.0–10.0 (optimum at pH 8.0), and NaCl tolerance up to 7 % (w/v) (optimum at 1 %). MK-7 was the only menaquinone detected in strain FJAT-49754T, and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids of strain FJAT-49754T were anteiso-C15 : 0, iso-C15 : 0, and C16 : 0. The genomic DNA G+C content of strain FJAT-49754T was 38.7 %. Based on the above results, strain FJAT-49754T represents a novel species of the genus Lederbergia , for which the name Lederbergia citrea sp. nov., is proposed. The type strain is FJAT-49754T (=CCTCC AB 2019211T=LMG 31589T).
-
-
-
Paenibacillus sedimenti sp. nov., isolated from freshwater wetland sediment
More LessA Gram-stain-positive, motile, rod-shaped, facultatively anaerobic bacterium, designated strain WST5T, isolated from sediment was characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain WST5T was most closely related to Paenibacillus aestuarii CJ25T (96.8 % similarity). The genome size of the WST5T was 6.5 Mb, contained 4500 predicted protein-coding genes, and had a DNA G+C content of 46.6%. The values of whole-genome average nucleotide identity analysis and digital DNA–DNA hybridization between strain WST5T and its closely related type strains were less than 76 and 25.6 %, respectively. The predominant cellular fatty acids (>10 %) were anteiso-C15 : 0 and C16 : 1 ω5c and the main menaquinone was MK-7. The major polar lipids were identified as diphospholidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and two unknown aminophospholipids. Based on the results of phenotypic, genotypic, chemotaxonomic and phylogenetic analyses, strain WST5T is considered to represent a novel species of the genus Paenibacillus , for which the name Paenibacillus sedimentum sp. nov. is proposed. The type strain is WST5T (=NBRC 115194 T=CGMCC 1.18706T).
-
-
-
Vallitalea longa sp. nov., an anaerobic bacterium isolated from marine sediment
More LessA novel bacterium, strain SH18-1T, was isolated from marine sediment collected near Sado Island in the Sea of Japan. This strain was strictly anaerobic, Gram-stain-negative, non-spore-forming, rod-shaped, motile, and mesophilic. It grew at 15–40 °C (optimum, 30–35 °C), at a NaCl concentration of 0.2–5.0 % (w/v; optimum, 1.5–2.5 %), and at pH 5.5–8.5 (optimum, pH 7.0). Results of 16S rRNA gene phylogenetic analysis showed a similarity value of 97.49 % between strain SH18-1T and Vallitalea guaymasensis Ra1766G1T, which was the most closely related species. The genome size of strain SH18-1T was 5.71 Mb and its G+C content was 30.2 mol%. Genome sequence analyses for comparison between strain SH18-1T and V. guaymasensis Ra1766G1T showed values lower than the threshold for species demarcation determined using the Genome-to-Genome Distance Calculator and the Average Nucleotide Identity Calculator. Elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, and nitrite were not used as terminal electron acceptors. The major fatty acids in strain SH18-1T were iso-C15 : 0, anteiso-C15 : 0, and C16 : 0, and the detected polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, glycolipid, three unidentified phospholipids, and one unidentified polar lipid. From these results, strain SH18-1T (=NBRC 115488T=DSM 114058T) is suggested to represent a novel species of the genus Vallitalea and the name Vallitalea longa sp. nov. is proposed.
-
-
-
Thermocaproicibacter melissae gen. nov., sp. nov., a thermophilic chain-elongating bacterium, producing n-caproate from polymeric carbohydrates
Strain MDTJ8T is a chain-elongating thermophilic bacterium isolated from a thermophilic acidogenic anaerobic digestor treating human waste while producing the high commodity chemical n-caproate. The strain grows and produces formate, acetate, n-butyrate, n-caproate and lactate from mono-, di- and polymeric saccharides at 37–60 °C (optimum, 50–55 °C) and at pH 5.0–7.0 (optimum, pH 6.5). The organism is an obligate anaerobe, is motile and its cells form rods (0.3–0.5×1.0–3.0 µm) that stain Gram-positive and occur primarily as chains. Phylogenetic analysis of both the 16S rRNA gene and full genome sequence shows that strain MDTJ8T belongs to a group that consists of mesophylic chain-elongating bacteria within the family Oscillospiraceae , being nearest to Caproicibacter fermentans EA1T (94.8 %) and Caproiciproducens galactitolivorans BS-1T (93.7 %). Its genome (1.96 Mbp) with a G+C content of 49.6 mol% is remarkably smaller than those of other chain-elongating bacteria of the family Oscillospiraceae . Pairwise average nucleotide identity and DNA–DNA hybridization values between strain MDJT8T and its mesophilic family members are less than 70 and 35 %, respectively, while pairwise average amino acid identity values are less than 68 %. In addition, strain MDJT8T uses far less carbohydrate and non-carbohydrate substrates compared to its nearest family members. The predominant cellular fatty acids of strain MDTJ8T are C14 : 0, C14 : 0 DMA (dimethyl acetal) and C16 : 0, while its polar lipid profile shows three unidentified glycophospholipids, 11 glycolipids, 13 phospholipids and six unidentified lipids. No respiratory quinones and polyamines are detected. Based on its phylogenetic, genotypic, morphological, physiological, biochemical and chemotaxonomic characteristics, strain MDTJ8T represents a novel species and novel genus of the family Oscillospiraceae and Thermocaproicibacter melissae gen. nov., sp. nov. is proposed as its name. The type strain is MDTJ8T (=DSM 114174T=LMG 32615T=NCCB 100883T).
-
-
-
Cytobacillus spongiae sp. nov. isolated from sponge Diacarnus spinipoculum
More LessA novel Gram-stain-positive, aerobic and motile bacterium, designated strain CY-GT, was isolated from a sponge (Diacarnus spinipoculum) collected from the Red Sea. The strain grew at 13–43 °C (optimum 30 °C), pH 5.5–10.0 (optimum pH 9.0) and with 0–8.0 % (w/v) (0–1.37 M) NaCl (optimum 0 %). The results of phylogenetic analysis based on the 16S rRNA gene sequences indicated that CY-GT represents a member of the genus Cytobacillus , with the highest sequence identity to Cytobacillus oceanisediminis H2T (97.05 %), followed by Cytobacillus firmus IAM 12464T (96.76 %). The major cellular fatty acids (>5 % of the total) of CY-GT were C15 : 0iso, C16 : 0iso, C16 : 1ω7c alcohol, C16 : 0, C17 : 1iso ω10c and C17 : 0iso. The major polar lipids were glycolipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major respiratory quinone is menaquinone-7 (MK-7). The cell-wall peptidoglycan contains meso-diaminopimelic acid. The total genome size of CY-GT is 4 789 051 bp. The DNA G+C content is 38.83 mol%. The average nucleotide identity and DNA–DNA hybridization among CY-GT and type strains of other species of the genus Cytobacillus were 76.79–78.97 % and 20.10–24.90 %, respectively. On the basis of the results of phylogenetic analysis, physiological and biochemical characterization, strain CY-GT represents a novel species of the genus Cytobacillus , for which the name Cytobacillus spongiae sp. nov. is proposed. The type strain is CY-GT (=MCCC 1K06383T=KCTC 43348T).
-
-
-
Moorella caeni sp. nov., isolated from thermophilic anaerobic sludge from a methanol-fed reactor
More LessStrain AMPT has been previously suggested as a strain of the species Moorella thermoacetica Jiang et al. 2009 (based on the high 16S rRNA gene identity, 98.3 %). However, genome-based phylogenetic analysis of strain AMPT reveals that this bacterium is in fact a novel species of the genus Moorella . Genome relatedness indices between strain AMPT and Moorella thermoacetica DSM 521T were below the minimum threshold values required to consider them members of the same species (digital DNA–DNA hybridization, 52.2 % (<70%); average nucleotide identity, 93.2 % (<95%)). Based on phylogenetic and phenotypic results we recommend that strain AMPT (DSM 21394T=JCM 35360T) should be classified as representing new species, for which we propose the name Moorella caeni sp. nov.
-
- Other Bacteria
-
-
Dehalogenimonas etheniformans sp. nov., a formate-oxidizing, organohalide-respiring bacterium isolated from grape pomace
A strictly anaerobic, organohalide-respiring bacterium, designated strain GPT, was characterized using a polyphasic approach. GPT is Gram-stain-negative, non-spore-forming and non-motile. Cells are irregular cocci ranging between 0.6 and 0.9 µm in diameter. GPT couples growth with the reductive dechlorination of 1,2-dichloroethane, vinyl chloride and all polychlorinated ethenes, except tetrachloroethene, yielding ethene and inorganic chloride as dechlorination end products. H2 and formate serve as electron donors for organohalide respiration in the presence of acetate as carbon source. Major cellular fatty acids include C16 : 0, C18 : 1ω9c, C16 : 1, C14 : 0 and C18 : 0. On the basis of 16S rRNA gene phylogeny, GPT is most closely related to Dehalogenimonas formicexedens NSZ-14T and Dehalogenimonas alkenigignens IP3-3T with 99.8 and 97.4 % sequence identities, respectively. Genome-wide pairwise comparisons based on average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization do not support the inclusion of GPT in previously described species of the genus Dehalogenimonas with validly published names. On the basis of phylogenetic, physiological and phenotypic traits, GPT represents a novel species within the genus Dehalogenimonas , for which the name Dehalogenimonas etheniformans sp. nov. is proposed. The type strain is GPT (= JCM 39172T = CGMCC 1.17861T).
-
-
-
Thermalbibacter longus gen. nov., sp. nov., isolated from a hot spring
An isolate, designated CFH 74404T, was recovered from a hot spring in Tengchong, Yunnan province, PR China. Phylogenetic analysis indicated that the isolate belongs to the family Thermomicrobiaceae and showed the highest 16S rRNA gene sequence similarity to Thermorudis peleae KI4T (93.6 %), Thermorudis pharmacophila WKT50.2T (93.1 %), Thermomicrobium roseum DSM 5159T (92.0 %) and Thermomicrobium carboxidum KI3T (91.7 %). The average amino acid identity and average nucleotide identity values between strain CFH 74404T and the closest relatives were 42.0–75.9 % and 67.0–77.3 %, respectively. Cells of strain CFH 74404T stained Gram-positive and were aerobic, non-motile and short rod-shaped. Growth occurred at 20–65 °C (optimum, 55 °C), pH 6.0–8.0 (optimum, pH 7.0) and with up to 2.0 % (w/v) NaCl (optimum 0–1.0 %, w/v). The predominant respiratory quinone was MK-8. The major fatty acids (>10 %) were C18 : 0 (50.8 %) and C20 : 0 (16.8 %). The polar lipid profile of strain CFH 74404T included diphosphatidylglycerol, four unidentified phosphoglycolipids, phosphatidylinositol and three unidentified glycolipids. The G+C content of the genomic DNA was determined to be 67.1 mol% based on the draft genome sequence. On the basis of phenotypic, phylogenetic and genotypic analyses, it is concluded that strain CFH 74404T represents a new species of a novel genus Thermalbibacter of the family Thermomicrobiaceae , for which the name Thermalbibacter longus gen. nov., sp. nov. is proposed. The type strain is CFH 74404T (=KCTC 62930T=CGMCC 1.61585T).
-
-
-
Geothrix fuzhouensis sp. nov. and Geothrix paludis sp. nov., two novel Fe(III)-reducing bacteria isolated from paddy soil
More LessTwo anaerobic, Fe(III)-reducing and Gram-stain-negative strains, designated SG12T and SG195T, were isolated from paddy soils in Fujian Province, PR China. Phylogenetic trees based on 16S rRNA genes and conserved core genes from genomes indicated that strains SG12T and SG195T clustered with members of the genus Geothrix. The two strains showed the highest 16S rRNA sequences similarities to the type strains of ‘Geothrix terrae’ SG184T (98.4–99.6 %), ‘Geothrix alkalitolerans’ SG263T (98.4–99.6 %) and Geothrix fermentans DSM 14018T (98.2–98.8 %). The average nucleotide identity and digital DNA–DNA hybridization values between the two strains and the closely related Geothrix species were 85.1–93.5 % and 29.8–52.9 %, respectively, lower than the cut-off level for prokaryotic species delineation. The menaquinone was MK-8 in both strains. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. Additionally, the two strains possessed iron reduction ability and could utilize organics such as benzene and benzoic acid as electron donors to reduce ferric citrate to ferrous iron. Based on the morphological, biochemical, chemotaxonomic and genome data, the two isolated strains represent two novel species of the genus Geothrix , for which the names Geothrix fuzhouensis sp. nov. and Geothrix paludis sp. nov. are proposed. The type strains are SG12T (=GDMCC 1.3407T=JCM 39330T) and SG195T (= GDMCC 1.3308T=JCM 39327T), respectively.
-
-
-
Gracilimonas sediminicola sp. nov., a moderately halotolerant bacterium isolated from seaweed sediment collected in the East Sea, Republic of Korea
A Gram-stain-negative, aerobic, rod-shaped bacterium, designated as strain CAU 1638T, was isolated from seaweed sediment collected in the Republic of Korea. The cells of strain CAU 1638T grew at 25–37 °C (optimum, 30 °C), at pH 6.0–7.0 (optimum, pH 6.5) and in the presence of 0–10% NaCl (optimum, 2 %). The cells were positive for catalase and oxidase and did not hydrolyse starch and casein. Strain CAU 1638T was most closely related to Gracilimonas amylolytica KCTC 52885T (97.7 %), followed by Gracilimonas halophila KCTC 52042T (97.4 %), Gracilimonas rosea KCCM 90206T (97.2 %), Gracilimonas tropica KCCM 90063T and Gracilimonas mengyeensis DSM 21985T (97.1 %), as revealed by 16S rRNA gene sequencing. MK-7 was the major isoprenoid quinone, and iso-C15 : 0 and C15 : 1 ω6c were the major fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, two unidentified lipids, two unidentified glycolipids and three unidentified phospholipids. The G+C content of the genome was 44.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain CAU 1638T and the reference strains were 73.1–73.9 % and 18.9–21.5 %, respectively. Based on its phylogenetic, phenotypic and chemotaxonomic features, strain CAU 1638T represents a novel species of the genus Gracilimonas , for which the name Gracilimonas sediminicola sp. nov. is proposed. The type strain is CAU 1638T (=KCTC 82454T=MCCC 1K06087T).
-
- Pseudomonadota
-
-
Marinobacter panjinensis sp. nov., a moderately halophilic bacterium isolated from sea tidal flat environment
Two moderately halotolerant bacterium strains, designated PJ-16T and PJ-38, were isolated from a tidal flat of the red beach in Panjin City, Liaoning Province, PR China. Cells were found to be Gram-stain-negative, aerobic, motile, rod-shaped with a single polar flagellum. Optimum growth of strain PJ-16T occurred at 30 °C, pH 7.0 and 0.2–8.0 % (w/v) NaCl, and strain PJ-38 at 30 °C, pH 6.0–7.0 and 0.2–8.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PJ-16T was most closely related to Marinobacter denitrificans KCTC 62941T (99.2 % 16S rRNA gene sequence similarity), Marinobacter algicola DSM 16394T (98.6 %), Marinobacter salarius JCM 19399T (98.4 %) and Marinobacter confluentis KCTC 42705T (98.2 %), and strain PJ-38 was most closely related to M. denitrificans KCTC 62941T (99.1 %), M. algicola DSM 16394T (98.6 %), M. salarius JCM 19399T (98.4 %) and M. confluentis KCTC 42705T (98.1 %). The G+C content of the genomic DNA of strain PJ-16T based on its draft genomic sequence was 57.4 mol%. The major cellular fatty acids of strain PJ-16T were C16 : 0, C16 : 1 ω7c/C16 : 1 ω6c and C18 : 1 ω9c. The major respiratory quinone of PJ-16T was ubiquinone-9 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The results of the phenotypic, phylogenetic and genomic analyses revealed that strains PJ-16T and PJ-38 represent a novel species of the genus Marinobacter , and the name Marinobacter panjinensis sp. nov. is proposed. The type strain is PJ-16T (= CGMCC 1.13694T= KCTC 72023T).
-
-
-
Ramlibacter paludis sp. nov., isolated from wetland
More LessA Gram-stain-negative, non-motile, rod-shaped, aerobic and white-coloured bacterium (designated XY19T) was isolated from a soil sample of wetland from Godeok Ecological Park, Gangdong-gu, Seoul, Republic of Korea. On the basis of 16S rRNA gene sequencing, strain XY19T clustered with species of the genus Ramlibacter and appeared closely related to R . ginsenosidimutans DSM 23480T (98.42 %), R. alkalitolerans JCM 32081T (97.68 %) and R . monticola JCM 31918T (97.66 %). The average nucleotide identity between strain XY19T and three strains ( R. ginsenosidimutans DSM 23480T, R. alkalitolerans JCM 32081T and R. monticola JCM 31918T) were 80.7, 81.1 and 81.4 %. And the digital DNA–DNA hybridization (dDDH) calculated between strain XY19T and each of the three strains ( R. ginsenosidimutans DSM 23480T, R. alkalitolerans JCM 32081T and R. monticola JCM 31918T) were 24.1, 24.4 and 24.5 %. ANI value and dDDH results were a novel species of the genus Ramlibacter . Growth occurs at 10–37 °C on R2A medium in the pressence of 0–1 % NaCl (w/v) and at pH 6.0–8.5. The DNA G+C content of the genomic DNA was 68.7 mol%, and ubiquinone-8 (Q-8) was the major respiratory quinone. The major cellular fatty acids (>5 %) were C16:1 ω7c and/or C16:1 ω6c (summed feature 3), C16 : 0, C17 : 0 cyclo and C18:1 ω7c and/or C18:1 ω6c (summed feature 8). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified lipids and unidentified aminophospholipid. Physiological and biochemical characteristics indicated that strain XY19T represents a novel species of the genus Ramlibacter , for which the name Ramlibacter paludis sp. nov. is proposed. The type strain is XY19T (= KACC 22220T = LMG 32190T).
-
-
-
Halomonas dongshanensis sp. nov., isolated from the seawater of Dongshan Island
A taxonomic study was carried out on strain yzlin-01T, isolated from Dongshan Island seawater. The bacterium was Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped, and motile by polar flagella. Growth was observed at temperatures of 10–40 °C, at salinities of 0.5–18 %, and at pH of 6–10. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain yzlin-01T belonged to the genus Halomonas , with the highest sequence similarity to Halomonas malpeensis YU-PRIM-29T (96.7 %), followed by Halomonas johnsoniae T68687T (96.4 %) and Halomonas gomseomensis M12T (96.4 %), and other species of the genus Halomonas (93.4–96.3 %). The ANI and digital DNA–DNA hybridization estimate values between strain yzlin-01T and the closest type strain Halomonas malpeensis YU-PRIM-29T were 77.44 and 21.6 %, respectively. The principal fatty acids were summed feature 8 (consisting of C18 : 1 ω7c and/or C18 : 1 ω6c; 55.7 %), C16 : 0 (20.6 %), C12 : 0 3-OH (6.8 %), summed feature 3 (consisting of C16 : 1 ω7c and/or C16 : 1 ω6c; 5.1 %). The G+C content of the chromosomal DNA was 60.0 mol %. The respiratory quinone was identified as Q-9 (100 %). Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, and three unidentified phospholipids were present. Combined genotypic and phenotypic data suggest that strain yzlin-01T represents a novel species within the genus Halomonas , for which the name Halomonas dongshanensis sp. nov. is proposed, with the type strain yzlin-01T (=GDMCC 1.3202T=KCTC 92467T).
-
-
-
Vibrio eleionomae sp. nov., isolated from shrimp (Penaeus vannamei) pond water
A novel Vibrio strain (CAIM 722T=SW9T=DSM 24596T) was isolated in 2003 from water of a shrimp (Penaeus vannamei) culture pond located in Los Mochis, Sinaloa, Mexico, and taxonomically characterized using a polyphasic approach. The 16S rRNA gene sequence clustered within those of the genus Vibrio , showing high similarity to the type strains of the Porteresiae clade. Multilocus sequence analysis using eight housekeeping genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, topA and 16S rRNA) and phylogenetic analysis with 139 single-copy genes showed that the strain forms an independent branch. Whole genome sequencing and genomic analyses (average nucleotide identity, OrthoANI, average amino acid identity and in silico DNA–DNA hybridization) produced values well below the thresholds for species delineation with all methods tested. In addition, a phenotypic characterization was performed to support the description and differentiation of the novel strain from related taxa. The results obtained demonstrate that the strain represent a novel species, for which the name Vibrio eleionomae sp. nov. is proposed.
-
Volumes and issues
-
Volume 75 (2025)
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
