1887

Abstract

A taxonomic study was carried out on strain GC03-9, which was isolated from deep-sea sediment of the Indian Ocean. The bacterium was Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped and gliding motile. Growth was observed at salinities of 0–9 % and at temperatures of 10–42 °C. The isolate could degrade gelatin and aesculin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GC03-9 belonged to the genus , with the highest sequence similarity to JCM 33424 (97.9 %), followed by KCTC 23123 (97.2 %) and other species of the genus (93.4–96.3 %). The average nucleotide identity and the digital DNA–DNA hybridization estimate values between strain GC03-9 and JCM 33424 and KCTC 23123 were 25.1 and 18.7 % and 82.47 and 75.69 %, respectively. The principal fatty acids were iso-C (28.0 %), iso-C 3OH (13.4 %), summed feature 9 (iso-C 9 and/or 10-methyl C; 13.3 %) and summed feature 3 (C 7 and/or C 6; 11.0 %). The G+C content of the chromosomal DNA was 41.17 mol%. The respiratory quinone was determined to be menaquinone-6 (100 %). Phosphatidylethanolamine, one unknown phospholipid, three unknown aminolipids and two unknown polar lipids were present. The combined genotypic and phenotypic data showed that strain GC03-9 represents a novel species within the genus , for which the name sp. nov. is proposed, with the type strain GC03-9 (=MCCC M25440=KCTC 92235).

Funding
This study was supported by the:
  • Open Fund of Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education China (Award No. KF202006)
    • Principle Award Recipient: NotApplicable
  • the National Natural Science Foundation of China (Award 42276140)
    • Principle Award Recipient: NotApplicable
  • Deep Sea Biological Resources Program (Award No. DY135-B2-11)
    • Principle Award Recipient: NotApplicable
  • Open access funding provided by the National Key Research and Development Program of China (Award No. 2018YFC0310701)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005861
2023-05-05
2024-12-03
Loading full text...

Full text loading...

References

  1. Bernardet J-F. Family I. Flavobacteriaceae Reichenbach 1992. In Bergey’s Manual of Systematic Bacteriology vol 4 Springer; 2011 pp 106–111
    [Google Scholar]
  2. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2005; 55:391–394 [View Article] [PubMed]
    [Google Scholar]
  3. Joung Y, Kim H, Jang T, Ahn TS, Joh K. Gramella jeungdoensis sp. nov., isolated from a solar saltern in Korea. J Microbiol 2011; 49:1022–1026 [View Article] [PubMed]
    [Google Scholar]
  4. Zhang X, Zheng L, Xamxidin M, Wang J, Wu Z et al. Gramella crocea sp. nov., isolated from activated sludge of a seafood processing plant. Antonie van Leeuwenhoek 2022; 115:969–978 [View Article] [PubMed]
    [Google Scholar]
  5. Yoon J, Jo Y, Kim GJ, Choi H. Gramella lutea sp. nov., a novel species of the family Flavobacteriaceae isolated from marine sediment. Curr Microbiol 2015; 71:252–258 [View Article] [PubMed]
    [Google Scholar]
  6. Shin SK, Kim E, Yi H. Gramella salexigens sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2018; 68:2381–2385 [View Article] [PubMed]
    [Google Scholar]
  7. Shahina M, Hameed A, Lin S-Y, Lee R-J, Lee M-R et al. Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie van Leeuwenhoek 2014; 105:771–779 [View Article] [PubMed]
    [Google Scholar]
  8. Park S, Yoon SY, Jung YT, Won SM, Yoon JH. Gramella sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2704–2710 [View Article] [PubMed]
    [Google Scholar]
  9. Park S, Kim S, Jung YT, Yoon JH. Gramella aquimixticola sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2015; 65:4244–4249 [View Article] [PubMed]
    [Google Scholar]
  10. Park S, Kim IK, Kim W, Yoon JH. Gramella sabulilitoris sp. nov., isolated from a marine sand. Int J Syst Evol Microbiol 2020; 70:909–914 [View Article] [PubMed]
    [Google Scholar]
  11. Park J-M, Park S, Won S-M, Jung Y-T, Shin K-S et al. Gramella aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2015; 65:1262–1267 [View Article] [PubMed]
    [Google Scholar]
  12. Panschin I, Becher M, Verbarg S, Spröer C, Rohde M et al. Description of Gramella forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of Gramella gaetbulicola Cho et al. 2011. Int J Syst Evol Microbiol 2017; 67:697–703 [View Article] [PubMed]
    [Google Scholar]
  13. Nedashkovskaya OI, Kim SB, Bae KS. Gramella marina sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2010; 60:2799–2802 [View Article] [PubMed]
    [Google Scholar]
  14. Liu L, Wang S, Zhou S, Sun W, Fu T et al. Gramella bathymodioli sp. nov., isolated from a mussel inhabiting a hydrothermal field in the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:5854–5860 [View Article] [PubMed]
    [Google Scholar]
  15. Liu K, Li S, Jiao N, Tang K. Gramella flava sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol 2014; 64:165–168 [View Article] [PubMed]
    [Google Scholar]
  16. Li AZ, Han XB, Lin LZ, Zhang MX, Zhu HH. Gramella antarctica sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol 2018; 68:358–363 [View Article] [PubMed]
    [Google Scholar]
  17. Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S et al. Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2005; 55:2497–2500 [View Article] [PubMed]
    [Google Scholar]
  18. Jeong SH, Jin HM, Jeon CO. Gramella aestuarii sp. nov., isolated from a tidal flat, and emended description of Gramella echinicola. Int J Syst Evol Microbiol 2013; 63:2872–2878 [View Article] [PubMed]
    [Google Scholar]
  19. Hwang SH, Hwang WM, Kang K, Ahn TY. Gramella fulva sp. nov., isolated from a dry surface of tidal flat. J Microbiol 2019; 57:23–29 [View Article] [PubMed]
    [Google Scholar]
  20. Hameed A, Shahina M, Lin S-Y, Liu Y-C, Lai W-A et al. Gramella oceani sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2014; 64:2675–2681 [View Article] [PubMed]
    [Google Scholar]
  21. Cho S-H, Chae S-H, Cho M, Kim T-U, Choi S et al. Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. Int J Syst Evol Microbiol 2011; 61:2654–2658 [View Article] [PubMed]
    [Google Scholar]
  22. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 1995; 45:116–123 [View Article]
    [Google Scholar]
  23. Cui Z, Lai Q, Dong C, Shao Z. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 2008; 10:2138–2149 [View Article] [PubMed]
    [Google Scholar]
  24. Ausubel F, Brent R, Kingston R, Moore D, Seidman J et al. Short Protocols in Molecular Biology, 3rd edn. New York: Wiley; 1995
    [Google Scholar]
  25. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005; 55:1181–1186 [View Article] [PubMed]
    [Google Scholar]
  26. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  27. Chun J, Lee J-H, Jung Y, Kim M, Kim S et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article] [PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  31. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article] [PubMed]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  34. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  35. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  37. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  38. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  40. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  41. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  42. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  43. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  44. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  45. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  46. Dong X-Z, Cai M-Y. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  47. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  48. Sasser M. Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI; 1990
    [Google Scholar]
  49. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  50. Tindall B. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  51. Kates M. Lipid extraction procedures. In Techniques of Lipidology Amsterdam: Elsevier; 1986 pp 100–111
    [Google Scholar]
  52. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  53. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005861
Loading
/content/journal/ijsem/10.1099/ijsem.0.005861
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error