1887

Abstract

A novel Gram-stain-positive, aerobic and motile bacterium, designated strain CY-G, was isolated from a sponge () collected from the Red Sea. The strain grew at 13–43 °C (optimum 30 °C), pH 5.5–10.0 (optimum pH 9.0) and with 0–8.0 % (w/v) (0–1.37 M) NaCl (optimum 0 %). The results of phylogenetic analysis based on the 16S rRNA gene sequences indicated that CY-G represents a member of the genus , with the highest sequence identity to H2 (97.05 %), followed by IAM 12464 (96.76 %). The major cellular fatty acids (>5 % of the total) of CY-G were Ciso, Ciso, Cω7 alcohol, C, Ciso ω10 and Ciso. The major polar lipids were glycolipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major respiratory quinone is menaquinone-7 (MK-7). The cell-wall peptidoglycan contains -diaminopimelic acid. The total genome size of CY-G is 4 789 051 bp. The DNA G+C content is 38.83 mol%. The average nucleotide identity and DNA–DNA hybridization among CY-G and type strains of other species of the genus were 76.79–78.97 % and 20.10–24.90 %, respectively. On the basis of the results of phylogenetic analysis, physiological and biochemical characterization, strain CY-G represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CY-G (=MCCC 1K06383=KCTC 43348).

Funding
This study was supported by the:
  • National Key Research and Development Program of China (Award 2018YFA0901901)
    • Principle Award Recipient: ZhiyongLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005903
2023-05-26
2024-04-25
Loading full text...

Full text loading...

References

  1. Liu Y, Li N, Eom MK, Schumann P, Zhang X et al. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2017; 67:4606–4611 [View Article] [PubMed]
    [Google Scholar]
  2. Xu L, Huang X-X, Wang H-T, Tang S-K, Shen B et al. Description and characterization of three endophytic Bacillaceae from the halophyte Suaeda salsa: Paenalkalicoccus suaedae gen. nov., sp. nov., Cytobacillus suaedae sp. nov., and Bacillus suaedae sp. nov. Int J Syst Evol Microbiol 2022; 72:005337 [View Article] [PubMed]
    [Google Scholar]
  3. Zhang J, Wang J, Fang C, Song F, Xin Y et al. Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2010; 60:2924–2929 [View Article] [PubMed]
    [Google Scholar]
  4. Wei X, Xin D, Xin Y, Zhang H, Wang T et al. Bacillus depressus sp. nov., isolated from soil of a sunflower field. Antonie van Leeuwenhoek 2016; 109:13–20 [View Article] [PubMed]
    [Google Scholar]
  5. Liu B, Liu G-H, Sengonca C, Schumann P, Ge C-B et al. Bacillus solani sp. nov., isolated from rhizosphere soil of a potato field. Int J Syst Evol Microbiol 2015; 65:4066–4071 [View Article] [PubMed]
    [Google Scholar]
  6. Liu B, Liu G-H, Sengonca C, Schumann P, Wang J-P et al. Bacillus praedii sp. nov., isolated from purplish paddy soil. Int J Syst Evol Microbiol 2017; 67:2823–2828 [View Article] [PubMed]
    [Google Scholar]
  7. Shi R, Yin M, Tang S-K, Lee J-C, Park D-J et al. Bacillus luteolus sp. nov., a halotolerant bacterium isolated from a salt field. Int J Syst Evol Microbiol 2011; 61:1344–1349 [View Article] [PubMed]
    [Google Scholar]
  8. Hong SW, Park JM, Kim SJ, Chung KS. Bacillus eiseniae sp. nov., a swarming, moderately halotolerant bacterium isolated from the intestinal tract of an earthworm (Eisenia fetida L.). Int J Syst Evol Microbiol 2012; 62:2077–2083 [View Article] [PubMed]
    [Google Scholar]
  9. Lin S-Y, Hameed A, Liu Y-C, Hsu Y-H, Lai W-A et al. Bacillus formosensis sp. nov., isolated from pesticide wastewater. Int J Syst Evol Microbiol 2015; 65:3800–3805 [View Article] [PubMed]
    [Google Scholar]
  10. Ivone VM, Vania F, Ana RL, Alexandre Ldc, Cathrin S et al. Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. Int J Syst Evol Microbiol 2012; 62:71–77 [View Article]
    [Google Scholar]
  11. Seiler H, Wenning M, Schmidt V, Scherer S. Bacillus gottheilii sp. nov., isolated from a pharmaceutical manufacturing site. Int J Syst Evol Microbiol 2013; 63:867–872 [View Article] [PubMed]
    [Google Scholar]
  12. Vaishampayan P, Probst A, Krishnamurthi S, Ghosh S, Osman S et al. Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. Int J Syst Evol Microbiol 2010; 60:1031–1037 [View Article] [PubMed]
    [Google Scholar]
  13. Seiler H, Schmidt V, Wenning M, Scherer S. Bacillus kochii sp. nov., isolated from foods and a pharmaceuticals manufacturing site. Int J Syst Evol Microbiol 2012; 62:1092–1097 [View Article] [PubMed]
    [Google Scholar]
  14. Chen Y, Sang J, Sun W, Song Q, Li Z. Mycetocola spongiae sp. nov., isolated from deep-sea sponge Cacospongia mycofijiensis. Int J Syst Evol Microbiol 2022; 72:005291 [View Article] [PubMed]
    [Google Scholar]
  15. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [View Article] [PubMed]
    [Google Scholar]
  16. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  17. Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 2017; 67:1191–1205 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  20. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  21. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  22. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  23. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  25. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  26. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  27. Chen Y-G, Cui X-L, Pukall R, Li H-M, Yang Y-L et al. Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 2007; 57:2327–2332 [View Article] [PubMed]
    [Google Scholar]
  28. Sasser M. Technical note 101: identification of bacteria by gas chromatography of cellular fatty acids. Newark: MIDI, Inc North 1990; 20:1–7
    [Google Scholar]
  29. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. Soc Appl Bacteriol Tech Ser 1985; 20:267–287
    [Google Scholar]
  30. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  32. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  33. Goodfellow M, Orchard VA. Antibiotic sensitivity of some nocardioform bacteria and its value as a criterion for taxonomy. J Gen Microbiol 1974; 83:375–387 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005903
Loading
/content/journal/ijsem/10.1099/ijsem.0.005903
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error