1887

Abstract

A taxonomic study was carried out on strain yzlin-01, isolated from Dongshan Island seawater. The bacterium was Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped, and motile by polar flagella. Growth was observed at temperatures of 10–40 °C, at salinities of 0.5–18 %, and at pH of 6–10. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain yzlin-01 belonged to the genus , with the highest sequence similarity to YU-PRIM-29 (96.7 %), followed by T68687 (96.4 %) and M12 (96.4 %), and other species of the genus (93.4–96.3 %). The ANI and digital DNA–DNA hybridization estimate values between strain yzlin-01 and the closest type strain YU-PRIM-29 were 77.44 and 21.6 %, respectively. The principal fatty acids were summed feature 8 (consisting of C c and/or C c; 55.7 %), C (20.6 %), C 3-OH (6.8 %), summed feature 3 (consisting of C c and/or C c; 5.1 %). The G+C content of the chromosomal DNA was 60.0 mol %. The respiratory quinone was identified as Q-9 (100 %). Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, and three unidentified phospholipids were present. Combined genotypic and phenotypic data suggest that strain yzlin-01 represents a novel species within the genus , for which the name sp. nov. is proposed, with the type strain yzlin-01 (=GDMCC 1.3202=KCTC 92467).

Funding
This study was supported by the:
  • the Scientific Research Foundation of Third Institute of Oceanography, MNR (Award 2019021)
    • Principle Award Recipient: Wen-zhenLin
  • the Major Program of Science and Technology Planning of Xiamen (Award 3502Z20211004)
    • Principle Award Recipient: Wen-zhenLin
  • Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry
    • Principle Award Recipient: Wen-zhenLin
  • the Science and Technology Planning Project of Xiamen (Award 3502Z20204503-9)
    • Principle Award Recipient: Wen-zhenLin
  • the Science and Technology Planning Project of Xiamen (Award 3502Z20182011)
    • Principle Award Recipient: Wen-zhenLin
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005830
2023-05-11
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/5/ijsem005830.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005830&mimeType=html&fmt=ahah

References

  1. Xu W, Lin W, Wang Z, Gao Y, Luo Y et al. Disentangling the abundance and structure of Vibrio communities in a semi-enclosed Bay with mariculture (Dongshan Bay, Southern China). Comput Struct Biotechnol J 2021; 19:4381–4393 [View Article]
    [Google Scholar]
  2. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [View Article]
    [Google Scholar]
  3. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article] [PubMed]
    [Google Scholar]
  4. Ventosa A, de la Haba RR, Arahal DR, Sánchez-Porro C. Halomonas. In Bergey’s Manual of Systematics of Archaea and Bacteria pp 1–111
    [Google Scholar]
  5. Arahal DR, Ventosa A. The family Halomonadaceae. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. eds The Prokaryotes: A Handbook on the Biology of BacteriaProteobacteria: Gamma Subclass vol 6 New York, NY: Springer New York; 2006 pp 811–835
    [Google Scholar]
  6. Ming H, Ji W-L, Li M, Zhao Z-L, Cheng L-J et al. Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. Int J Syst Evol Microbiol 2020; 70:3504–3512 [View Article] [PubMed]
    [Google Scholar]
  7. Wang CY, Wu SJ, Ng CC, Tzeng WS, Shyu YT. Halomonas beimenensis sp. nov., isolated from an abandoned saltern. Int J Syst Evol Microbiol 2012; 62:3013–3017 [View Article]
    [Google Scholar]
  8. So Y, Chhetri G, Kim I, Kang M, Kim J et al. Halomonas antri sp. nov., a carotenoid-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  9. Wang F, Wan J-J, Zhang X-Y, Xin Y, Sun M-L et al. Halomonas profundi sp. nov., isolated from deep-sea sediment of the Mariana Trench. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  10. Pandiyan K, Kushwaha P, Bagul SY, Chakdar H, Madhaiyan M et al. Halomonas icarae sp. nov., a moderately halophilic bacterium isolated from beach soil in India. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  11. Xue M, Wen C-Q, Liu L, Fang B-Z, Salam N et al. Halomonas litopenaei sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from a shrimp hatchery. Int J Syst Evol Microbiol 2018; 68:3914–3921 [View Article]
    [Google Scholar]
  12. Kazemi E, Tarhriz V, Amoozegar MA, Hejazi MS. Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  13. Ramezani M, Pourmohyadini M, Nikou MM, Makzum S, Schumann P et al. Halomonas lysinitropha sp. nov., a novel halophilic bacterium isolated from a hypersaline wetland. Int J Syst Evol Microbiol 2020; 70:6098–6105 [View Article] [PubMed]
    [Google Scholar]
  14. Gao P, Lu H, Xing P, Wu QL. Halomonas rituensis sp. nov. and Halomonas zhuhanensis sp. nov., isolated from natural salt marsh sediment on the Tibetan Plateau. Int J Syst Evol Microbiol 2020; 70:5217–5225 [View Article]
    [Google Scholar]
  15. Li X, Gan L, Hu M, Wang S, Tian Y et al. Halomonas pellis sp. nov., a moderately halophilic bacterium isolated from wetsalted hides. Int J Syst Evol Microbiol 2020; 70:5417–5424 [View Article]
    [Google Scholar]
  16. Erkorkmaz BA, Kırtel O, Abaramak G, Nikerel E, Toksoy Öner E. UV and chemically induced Halomonas smyrnensis mutants for enhanced levan productivity. J Biotechnol 2022; 356:19–29 [View Article]
    [Google Scholar]
  17. Hobmeier K, Oppermann M, Stasinski N, Kremling A, Pflüger-Grau K et al. Metabolic engineering of Halomonas elongata: ectoine secretion is increased by demand and supply driven approaches. Front Microbiol 2022; 13:968983 [View Article]
    [Google Scholar]
  18. Tang H, Wang MJ, Gan XF, Li YQ. Funneling lignin-derived compounds into polyhydroxyalkanoate by Halomonas sp. Y3. Bioresour Technol 2022; 362:127837 [View Article]
    [Google Scholar]
  19. Xu M, Chang Y, Zhang Y, Wang W, Hong J et al. Development and application of transcription terminators for polyhydroxylkanoates production in halophilic Halomonas bluephagenesis TD01. Front Microbiol 2022; 13:941306 [View Article]
    [Google Scholar]
  20. Yan X, Liu X, Yu L-P, Wu F, Jiang X-R et al. Biosynthesis of diverse α,ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab Eng 2022; 72:275–288 [View Article]
    [Google Scholar]
  21. Xu W, Gong L, Yang S, Gao Y, Ma X et al. Spatiotemporal dynamics of Vibrio communities and abundance in Dongshan Bay, South of China. Front Microbiol 2020; 11:575287 [View Article]
    [Google Scholar]
  22. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005; 55:1181–1186 [View Article]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article] [PubMed]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  29. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  31. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article]
    [Google Scholar]
  32. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  33. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  34. Oren A, Ventosa A. Subcommittee on the taxonomy of Halobacteriaceae and subcommittee on the taxonomy of Halomonadaceae. Int J Syst Evol Microbiol 2013; 63:3540–3544 [View Article]
    [Google Scholar]
  35. de la Haba RR, Márquez MC, Papke RT, Ventosa A. Multilocus sequence analysis of the family Halomonadaceae. Int J Syst Evol Microbiol 2012; 62:520–538 [View Article]
    [Google Scholar]
  36. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  37. Dong X-Z, Cai M-Y. Determinative Manual for Routine Bacteriology [English translation] Beijing: Scientific Press; 2001
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI; 1990
    [Google Scholar]
  39. Kates M. Lipid extraction procedures. In Techniques of Lipidology Amsterdam: Elsevier; 1986 pp 100–111
    [Google Scholar]
  40. Collins M. Isoprenoid quinone analyses in bacterial classification and identification. Soc Appl Bacteriol Tech 1985
    [Google Scholar]
  41. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  43. Kämpfer P, Rekha PD, Busse H-J, Arun AB, Priyanka P et al. Halomonas malpeensis sp. nov., isolated from rhizosphere sand of a coastal sand dune plant. Int J Syst Evol Microbiol 2018; 68(4):1037–1046 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005830
Loading
/content/journal/ijsem/10.1099/ijsem.0.005830
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error