1887

Abstract

A Gram-stain-positive, motile, rod-shaped, facultatively anaerobic bacterium, designated strain WST5, isolated from sediment was characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain WST5 was most closely related to CJ25 (96.8 % similarity). The genome size of the WST5 was 6.5 Mb, contained 4500 predicted protein-coding genes, and had a DNA G+C content of 46.6%. The values of whole-genome average nucleotide identity analysis and digital DNA–DNA hybridization between strain WST5 and its closely related type strains were less than 76 and 25.6 %, respectively. The predominant cellular fatty acids (>10 %) were anteiso-C and C ω5 and the main menaquinone was MK-7. The major polar lipids were identified as diphospholidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and two unknown aminophospholipids. Based on the results of phenotypic, genotypic, chemotaxonomic and phylogenetic analyses, strain WST5 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is WST5 (=NBRC 115194 =CGMCC 1.18706).

Funding
This study was supported by the:
  • Science and Technology Planning Project of Inner Mongolia (Award JH20180633)
    • Principle Award Recipient: ZhihuaBao
  • Natural Science Foundation of Inner Mongolia (Award 2019MS04005)
    • Principle Award Recipient: ZhihuaBao
  • the Science and Technology Major Project on Lakes of Inner Mongolia grant (Award ZDZX2018054)
    • Principle Award Recipient: LixinWang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005860
2023-05-12
2024-12-05
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  2. Sheela T, Usharani P. Influence of plant growth promoting rhizobacteria (PGPR) on the growth of maize (Zea mays L). Gold Res Thoughts 2013; 3:629–640
    [Google Scholar]
  3. de Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LMP. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 2015; 65:951–964 [View Article]
    [Google Scholar]
  4. Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan ZC. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol 2016; 16:244 [View Article] [PubMed]
    [Google Scholar]
  5. Li X, Deng Z, Liu Z, Yan Y, Wang T et al. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes. BMC Genomics 2014; 15:723 [View Article] [PubMed]
    [Google Scholar]
  6. Singh AK, Ghodke I, Chhatpar HS. Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. J Environ Manage 2009; 91:358–362 [View Article] [PubMed]
    [Google Scholar]
  7. Huang J, Huang Z-L, Zhou J-X, Li C-Z, Yang Z-H et al. Enhancement of heavy metals removal by microbial flocculant produced by Paenibacillus polymyxa combined with an insufficient hydroxide precipitation. Chem Eng J 2019; 374:880–894 [View Article]
    [Google Scholar]
  8. Lim J-M, Jeon CO, Lee J-C, Xu L-H, Jiang C-L et al. Paenibacillus gansuensis sp. nov., isolated from desert soil of Gansu province in China. Int J Syst Evol Microbiol 2006; 56:2131–2134 [View Article] [PubMed]
    [Google Scholar]
  9. Yoon MH, Ten LN, Im WT. Paenibacillus ginsengarvi sp. nov., isolated from soil from ginseng cultivation. Int J Syst Evol Microbiol 2007; 57:1810–1814 [View Article] [PubMed]
    [Google Scholar]
  10. Cao Y, Chen F, Li Y, Wei S, Wang G. Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 2015; 65:165–170 [View Article] [PubMed]
    [Google Scholar]
  11. Dai X, Shi K, Wang X, Fan J, Wang R et al. Paenibacillus flagellatus sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol 2019; 69:183–188 [View Article] [PubMed]
    [Google Scholar]
  12. Yang D, Cha S, Choi J, Seo T. Paenibacillus mobilis sp. nov., a Gram-stain-negative bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:1140–1145 [View Article] [PubMed]
    [Google Scholar]
  13. Daane LL, Harjono I, Barns SM, Launen LA, Palleron NJ et al. PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 2002; 52:131–139 [View Article] [PubMed]
    [Google Scholar]
  14. Xin K, Li M, Chen C, Yang X, Li Q et al. Paenibacillus qinlingensis sp. nov., an indole-3-acetic acid-producing bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) Ying. Int J Syst Evol Microbiol 2017; 67:589–595 [View Article] [PubMed]
    [Google Scholar]
  15. Baik KS, Choe HN, Park SC, Kim EM, Seong CN. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2011; 61:2763–2768 [View Article] [PubMed]
    [Google Scholar]
  16. Clermont D, Gomard M, Hamon S, Bonne I, Fernandez J-C et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015; 65:4621–4626 [View Article] [PubMed]
    [Google Scholar]
  17. Im W-T, Yi K-J, Lee S-S, Moon HI, Jeon CO et al. Paenibacillus konkukensis sp. nov., isolated from animal feed. Int J Syst Evol Microbiol 2017; 67:2343–2348 [View Article] [PubMed]
    [Google Scholar]
  18. Sitdhipol J, Paek J, Sin Y, Park I-S, Thamacharoensuk T et al. Paenibacillus cathormii sp. nov., isolated from tree bark. Int J Syst Evol Microbiol 2016; 66:1187–1192 [View Article] [PubMed]
    [Google Scholar]
  19. Li P, Lin W, Liu X, Li S, Luo L et al. Paenibacillus aceti sp. nov., isolated from the traditional solid-state acetic acid fermentation culture of Chinese cereal vinegar. Int J Syst Evol Microbiol 2016; 66:3426–3431 [View Article] [PubMed]
    [Google Scholar]
  20. Bae J-Y, Kim K-Y, Kim J-H, Lee K, Cho J-C et al. Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2010; 60:644–647 [View Article] [PubMed]
    [Google Scholar]
  21. Bhagowati B, Ahamad KU. A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol Hydrobiol 2019; 19:155–166 [View Article]
    [Google Scholar]
  22. Xu Y, Wu Y, Han J, Li P. The current status of heavy metal in lake sediments from China: pollution and ecological risk assessment. Ecol Evol 2017; 7:5454–5466 [View Article] [PubMed]
    [Google Scholar]
  23. Zhang H, Liang P, Liu Y, Wang X, Bai Y et al. Spatial distributions and intrinsic influence analysis of Cr, Ni, Cu, Zn, As, Cd and Pb in sediments from the Wuliangsuhai Wetland, China. Int J Environ Res Public Health 2022; 19:10843 [View Article] [PubMed]
    [Google Scholar]
  24. Zhang S, Cui J, Zhang M, Liu J, Wang L et al. Diversity of active anaerobic ammonium oxidation (ANAMMOX) and nirK-type denitrifying bacteria in macrophyte roots in a eutrophic wetland. J Soils Sediments 2021; 21:2465–2473 [View Article] [PubMed]
    [Google Scholar]
  25. Tanaka Y, Tamaki H, Matsuzawa H, Nigaya M, Mori K et al. Microbial community analysis in the roots of aquatic plants and isolation of novel microbes including an organism of the candidate phylum OP10. Microbes Environ 2012; 27:149–157 [View Article] [PubMed]
    [Google Scholar]
  26. Bao Z, Sato Y, Fujimura R, Ohta H. Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales. Int J Syst Evol Microbiol 2014; 64:775–780 [View Article] [PubMed]
    [Google Scholar]
  27. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  31. Nei M, Kumar S. Molecular evolution and phylogenetics. Heredity 2013; 86:385
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  33. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J et al. Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 2012; 35:455–464 [View Article] [PubMed]
    [Google Scholar]
  34. Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 2010; 60:154–165 [View Article] [PubMed]
    [Google Scholar]
  35. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  37. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  38. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  41. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  42. Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol 2018; 16:263–276 [View Article] [PubMed]
    [Google Scholar]
  43. Bao Z, Sato Y, Fujimura R, Ohta H. A thallium-tolerant soil bacterium in the order Rhizobiales. Int J Syst Evol Microbiol 2013; 64: [View Article] [PubMed]
    [Google Scholar]
  44. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774 [View Article] [PubMed]
    [Google Scholar]
  45. Dong XZ, Cai MY. Determination of biochemical properties. In Dong XZ, Cai MY. eds Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001 pp 370–398
    [Google Scholar]
  46. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt T. eds Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  47. Sasser M. Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI; 1990
    [Google Scholar]
  48. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. In Laboratory Techniques in Biochemistry and Molecular Biology Newport Somerville; 1972 pp 151–155
    [Google Scholar]
  50. Ohta H, Ogiwara K, Murakami E, Takahashi H, Sekiguchi M. Quinone profiling of bacterial populations developed in the surface layer of volcanic mudflow deposits from Mt. Pinatubo (the Philippines). Soil Biol Biochem 2003; 35:1155–1158 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005860
Loading
/content/journal/ijsem/10.1099/ijsem.0.005860
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error