- Volume 71, Issue 5, 2021
Volume 71, Issue 5, 2021
- Letter to the Editor
-
-
-
On nanoparticles, paraphyly, inventions, yeasts and diarrhea
More LessCitations do not always guarantee that a paper aroused interest in the citing author(s).
-
-
- Validation List
-
- Notification List
-
- New Taxa
-
- Actinobacteria
-
-
Description of Clavibacter zhangzhiyongii sp. nov., a phytopathogenic actinobacterium isolated from barley seeds, causing leaf brown spot and decline
More LessClavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies, five of which have been redefined as different species on the basis of their genome sequence data. On the basis of the results of phylogenetic analysis of dnaA gene sequences, strains of members of the genus Clavibacter isolated from barley have been grouped in a separate clade from other species and subspecies of the genus Clavibacter . In this study, the biochemical, physiological, fatty acids and genetic characteristics of strains DM1T and DM3, which represented the barley isolates, were examined. On the basis of results from multi-locus sequence typing and other biochemical and physiological features, including colony colour, carbon source utilisation and enzyme activities, DM1T and DM3 are categorically differentiated from the aforementioned eight species and subspecies of the genus Clavibacter . Moreover, the results of genomic analysis reveal that the DNA G+C contents of DM1T and DM3 are 73.7 and 73.5 %, respectively, and the average nucleotide identity (ANI) values between DM1T and DM3 and other species and subspecies range from 90.4 to 92.0 %. The ANI value between DM1T and DM3 is 98.0 %. These results indicate that DM1T and DM3 are distinct from other known species and subspecies of the genus Clavibacter . Therefore, we propose a novel species, C. zhangzhiyongii, with DM1T (=CFCC 16553 T=LMG 31970T) as the type strain.
-
-
-
Mycobacterium vicinigordonae sp. nov., a slow-growing scotochromogenic species isolated from sputum
A slow-growing, scotochromogenic mycobacterial strain (24T) was isolated from the sputum of a Chinese male human. Phylogenetic analysis using the 16S rRNA gene assigned strain 24T to the Mycobacterium gordonae complex, which includes Mycobacterium gordonae and Mycobacterium paragordonae . The phenotypic characteristics, unique mycolic acid profile and the results of phylogenetic analysis based on hsp65 and rpoB sequences strongly supported the taxonomic status of strain 24T as a representative of a species distinct from the other members of the M. gordonae complex. The genomic G+C content of strain 24T was 65.40mol%. Genomic comparisons showed that strain 24T and M. gordonae ATCC 14470T had an average nucleotide identity (ANI) value of 81.00 % and a DNA–DNA hybridization (DDH) value of 22.80 %, while the ANI and DDH values between strain 24Tand M. paragordonae 49 061T were 80.98 and 22.80 %, respectively. In terms of phylogenetic, phenotypic and chemotaxonomic features, strain 24T is distinguishable from its closest phylogenetic relatives and represents a novel species of the genus Mycobacterium , therefore the name Mycobacterium vicinigordonae sp. nov. is proposed. The type strain is 24T (=CMCC 93559T=DSM 105979T).
-
-
-
Corynebacterium lizhenjunii sp. nov., isolated from the respiratory tract of Marmota himalayana, and Corynebacterium qintianiae sp. nov., isolated from the lung tissue of Pseudois nayaur
Four Gram-stain-positive, non-motile and asporous bacilli (strains ZJ-599T, ZJ-621, MC1420T and MC1482), isolated from animal tissue and environmental samples collected on the Qinghai-Tibet Plateau, PR China, were taxonomically characterized. Based on the results of 16S rRNA gene sequence analyses, the closest relatives of strains ZJ-599T and ZJ-621 were Corynebacterium endometrii LMM-1653T (97.5 %), Corynebacterium phocae M408/89/1T (96.5 %) and Corynebacterium flavescens OJ8T (96.3 %), whereas strains MC1420T and MC1482 were closest to Corynebacterium sanguinis CCUG 58655T (98.9 %), Corynebacterium mycetoides DSM 20632T (98.4 %) and Corynebacterium lipophiloflavum DSM 44291T (97.9 %). The results of rpoB gene sequence similarity analysis indicated that C. phocae M408/89/1T and C. sanguinis CCUG 58655T were closest to strains ZJ-599T/ZJ-621 (83.5 %) and MC1420T/MC1482 (91.8 %), respectively. The two novel type strains shared a similarity of 95.2 % in 16S rRNA and 81.3 % in rpoB gene sequences. The TAP-PCR DNA fingerprint and MALDI-TOF MS spectrum patterns clearly differentiated the novel isolates within and between each pair of strains. Strain ZJ-599T had 21.9–22.4 % digital DNA–DNA hybridization (dDDH) scores with C. endometrii LMM-1653T, C. phocae M408/89/1T and C. flavescens OJ8T, and 72.3–72.9 % of average nucleotide identity (ANI) with them. Similarly, strain MC1420T had 22.9–23.7 % dDDH values with C. sanguinis CCUG 58655T, C. mycetoides DSM 20632T and C. lipophiloflavum DSM 44291T, and 80.4–81.3 % ANI scores with them. Strain ZJ-599T had a 23.1 % dDDH value and 70.5 % ANI score with strain MC1420T, both below the corresponding thresholds for species delineation. Strains ZJ-599T and MC1420T both contain mycolic acids and have MK-8(H2) and MK-9(H2) as the predominant respiratory quinones, meso-diaminopimelic acid as the diagnostic diamino acid, and C18 : 1 ω9c as the main fatty acid. C17 : 1 ω8c and C15 : 1 ω8c were predominant in strain ZJ-599T in contrast to C17 : 1 ω7c being predominant in strain MC1420T. The main polar lipids in strain ZJ-599T were diphosphatidylglycerol, phosphatidylinositol and one unidentified glycolipid, while strain MC1420T had diphosphatidylglycerol, phosphatidylglycerol and one unidentified lipid as the major components. Since the two pairs of novel strains (ZJ-599T/ZJ-621, MC1420T/MC1482) distinctly differ from each other and from their nearest relatives, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium lizhenjunii (type strain ZJ-599T=GDMCC 1.1779T=JCM 34341T) and Corynebacterium qintianiae (type strain MC1420T=GDMCC 1.1783T=JCM 34340T), respectively.
-
-
-
Natronoglycomyces albus gen. nov., sp. nov, a haloalkaliphilic actinobacterium from a soda solonchak soil
A haloalkaliphilic hydrolytic actinobacterium, strain ACPA22T, was enriched and isolated in pure culture from saline alkaline soil (soda solonchak) in northeastern Mongolia. The isolate was facultatively alkaliphilic, growing at pH 6.5–10.5 (optimum at 7.3–9.0) and highly salt-tolerant, tolerating up to 3 M total Na+ as carbonates. The hydrolytic nature of ACPA22T was confirmed by two different growth-dependent methods and by the presence of multiple glycosidase-encoding genes in the genome. The 16S rRNA gene-based phylogenetic analysis demonstrated that strain ACPA22T formed a deep-branching lineage within the family Glycomycetaceae, with the highest sequence similarity value to Glycomyces buryatensis 18T (92.1 %) and Salininema proteolyticum Miq-4T (91.8 %). The average amino acid identity values (56.1–61.5 %) between ACPA22T and other Glycomycetaceae members with available genomes did not exceed the threshold reported for different genera. The cell wall of ACPA22T contained meso-diaminopimelic acid, glycine, glutamic acid and alanine in a molar ratio, characteristic of the peptidoglycan type A1γ'. The whole-cell sugars included mannose, galactose, arabinose, ribose and xylose. The major menaquinones were MK-10(Н4) and MK-11(Н4). The identified polar lipids were represented by phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. In addition, the strain had a few unidentified characteristic polar lipids, including an amine-containing phospholipid with chromatographic mobility similar to that of phosphatidylinositol. The polar lipid fatty acids were dominated by anteiso-C17 : 0 and iso-C16 : 0. The genome included a chromosome of 3.94 Mbp (G+C content 61.5 mol%) encoding 3285 proteins and two plasmids of 59.8 and 14.8 kBp. Based on the data obtained in this study, a new genus and species, Natronoglycomyces albus gen. nov., sp. nov, is proposed with the type strain ACPA22T (=DSM 106290T=VKM Ac-2771T).
-
-
-
New human-associated species of the family Atopobiaceae and proposal to reclassify members of the genus Olsenella
Five novel bacterial strains, Marseille-P1476T (=CSURP1476T=DSM 100642T), Marseille-P3256T (=CSURP3256T=CECT 9977T), Marseille-P2936T (=CSURP2936T=DSM 103159T), Marseille-P2912T (=CSURP2912T=DSM 103345T) and Marseille-P3197T (=CSURP3197T=CCUG 71847T), were isolated from various human specimens. These five strains were not identified at the species level by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Following 16S rRNA gene sequence comparisons with the GenBank database, the highest nucleotide sequence similarities of all studied strains were obtained to members of the paraphyletic genus Olsenella . A polyphasic taxono-genomic strategy (16S rRNA gene-based and core genome-based phylogeny, genomic comparison, phenotypic and biochemical characteristics) enabled us to better classify these strains and reclassify Olsenella species. Among the studied strains, Marseille-P1476T, Marseille-P2936T and Marseille-P3197T belonged to new species of the genus Olsenella for which we propose the names Olsenella massiliensis sp. nov., Olsenella phocaeensis sp. nov. and Olsenella urininfantis sp. nov., respectively. Strains Marseille-P2912T and Marseille-P3256T belonged to a new genus for which the names Thermophilibacter provencensis gen. nov., sp. nov. and Thermophilibacter mediterraneus gen. nov., sp. nov. are proposed, respectively. We also propose the creation of the genera Parafannyhessea gen. nov., Tractidigestivibacter gen. nov. and Paratractidigestivibacter gen. nov. and the reclassification of Olsenella umbonata as Parafannyhessea umbonata comb. nov., Olsenella scatoligenes as Tractidigestivibacter scatoligenes comb. nov., and Olsenella faecalis as Paratractidigestivibacter faecalis comb. nov.
-
-
-
Aquiluna borgnonia gen. nov., sp. nov., a member of a Microbacteriaceae lineage of freshwater bacteria with small genome sizes
More LessThe actinobacterial strain 15G-AUS-rotT was isolated from an artificial pond located near Salzburg, Austria. The strain showed 16S rRNA gene sequence similarities of 98.7 % to Candidatus Aquiluna rubra and of 96.6 and 96.7 % to the two validly described species of the genus Rhodoluna . Phylogenetic reconstructions based on 16S rRNA gene sequences and genome-based on amino acid sequences of 118 single copy genes referred strain 15G-AUS-rotT to the family Microbacteriaceae and therein to the so-called subcluster Luna-1. The genome-based phylogenetic tree showed that the new strain represents a putative new genus. Cultures of strain 15G-AUS-rotT were light red pigmented and comprised very small, rod-shaped cells. They metabolized a broad variety of substrates. Major fatty acids (>10 %) of cells were iso-C16 : 0, antiso-C15 : 0 and iso-C14 : 0. The major respiratory quinone was MK-11 and a minor component was MK-10. The peptidoglycan structure belonged to an unusual B type. The closed genome sequence of the strain was very small (1.4 Mbp) and had a DNA G+C content of 54.8 mol%. An interesting feature was the presence of genes putatively encoding the complete light-driven proton pumping actinorhodopsin/retinal system, which were located at three different positions of the genome. Based on the characteristics of the strain, a new genus and a new species termed Aquiluna borgnonia is proposed for strain 15G-AUS-rotT (=DSM 107803T=JCM 32974T).
-
- Bacteroidetes
-
-
Phnomibacter ginsenosidimutans gen. nov., sp. nov., a novel glycoside hydrolase positive bacterial strain with ginsenoside hydrolysing activity
More LessThe conversion of major ginsenosides into minor ginsenosides attracts a lot of interest because of their biological and pharmaceutical activities. Therefore, for the conversion of ginsenosides, finding a novel competent glycoside hydrolase-producing bacterial strain is useful for future research studies and the mass production of minor ginsenosides. Wastewater samples were collected and screened for novel glycoside hydrolase bacterial strains using Reasoner's 2A+aesculin agar medium. As a result, a novel glycoside hydrolase positive bacterial strain (SB-02T) was identified and subjected to a polyphasic taxonomic analysis. Based on genome analysis, strain SB-02T was found to be affiliated with the family Chitinophagaceae and have less than 92.8 % sequence similarity to other members of the same family. Functional analysis indicated that SB-02T was able to hydrolyse the ginsenosides Rb1, Rc and Rd to F2 and C-K. Due to the conversion of ginsenosides, the strain’s genome was sequenced and the genes were annotated by the NCBI. The average amino acid identity and average nucleotide identity values between SB-02T and the available reference genomes were 65.7 and 65.9 %, respectively. The novel isolate contained MK-7 as the predominant menaquinone, the major polyamine putrescine, and iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH as major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Thus, based on the data presented here, strain SB-02T represents a novel species within a new genus in the family Chitinophagaceae , for which the name Phnomibacter ginsenosidimutans gen. nov., sp. nov. is proposed. The type strain of Phnomibacter ginsenosidimutans is SB-02T (=KACC 21266T=LMG 31707T). The genome annotation of SB-02T shows many glycoside hydrolase genes, which may be responsible for the efficient production of many kinds of minor ginsenosides and will be very helpful for future research (target gene cloning) and mass production of either F2 or C-K.
-
-
-
Sphingobacterium phlebotomi sp. nov., a new member of family Sphingobacteriaceae isolated from sand fly rearing substrate
A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic bacterium, designated type strain SSI9T, was isolated from sand fly (Phlebotomus papatasi Scopoli; Diptera: Psychodidae) rearing substrate and subjected to polyphasic taxonomic analysis. Strain SSI9T contained phosphatidylethanolamine as a major polar lipid, MK-7 as the predominant quinone, and C16 : 1ω6c/C16 : 1ω7c, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0 as the major cellular fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that SSI9T represents a member of the genus Sphingobacterium , of the family Sphingobacteriaceae sharing 96.5–88.0 % sequence similarity with other species of the genus Sphingobacterium . The results of multilocus sequence analysis using the concatenated sequences of the housekeeping genes recA, rplC and groL indicated that SSI9T formed a separate branch in the genus Sphingobacterium . The genome of SSI9T is 5 197 142 bp with a DNA G+C content of 41.8 mol% and encodes 4395 predicted coding sequences, 49 tRNAs, and three complete rRNAs and two partial rRNAs. SSI9T could be distinguished from other species of the genus Sphingobacterium with validly published names by several phenotypic, chemotaxonomic and genomic characteristics. On the basis of the results of this polyphasic taxonomic analysis, the bacterial isolate represents a novel species within the genus Sphingobacterium , for which the name Sphingobacterium phlebotomi sp. nov. is proposed. The type strain is SSI9T (=ATCC TSD-210T=LMG 31664T=NRRL B-65603T).
-
-
-
Sphingobacterium lumbrici sp. nov., a novel bacterium isolated from wormcast of Eisenia foetida
A novel Gram-stain-negative, rod-shaped, non-motile, yellowish bacterium, designated strain 1.3611T, was isolated from the wormcast of Eisenia foetida. The strain grew optimally at 30–37 ℃, at pH 7.0 and with 0–1.0 % (w/v) NaCl. Based on the results of 16S rRNA gene sequence and phylogenetic analyses, strain 1.3611T showed the highest degree of 16S rRNA gene sequence similarity to Sphingobacterium olei HAL-9T (97.0 %), followed by Sphingobacterium alkalisoli Y3L14T (95.8 %). The respiratory quinone of strain 1.3611T was menaquinone-7 (MK-7) and its major cellular fatty acids were iso-C15 : 0 (41.3 %), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c, 22.1 %) and iso-C17 : 0 3-OH (16.2 %). The major polar lipids were sphingophospholipid, phosphatidylethanolamine, four unidentified glycolipids, two unidentified phospholipids and five unidentified polar lipids. The genomic DNA G+C content was 39.0 mol%. The digital DNA–DNA hybridization and average nucleotide identity values between the genomes of strain 1.3611T and S. olei HAL-9T were 37.9 and 88.9 %, respectively. According to the phenotypic and chemotaxonomic phylogenetic results, strain 1.3611T should represent a novel species of the genus Sphingobacterium , for which the name Sphingobacterium lumbrici sp. nov. is proposed, with strain 1.3611T (=KCTC 62980T=CCTCC AB 2018349T) as the type strain.
-
- Firmicutes and Related Organisms
-
-
Listeria cossartiae sp. nov., Listeria immobilis sp. nov., Listeria portnoyi sp. nov. and Listeria rustica sp. nov., isolated from agricultural water and natural environments
More LessA total of 27 Listeria isolates that could not be classified to the species level were obtained from soil samples from different locations in the contiguous United States and an agricultural water sample from New York. Whole-genome sequence-based average nucleotide identity blast (ANIb) showed that the 27 isolates form five distinct clusters; for each cluster, all draft genomes showed ANI values of <95 % similarity to each other and any currently described Listeria species, indicating that each cluster represents a novel species. Of the five novel species, three cluster with the Listeria sensu stricto clade and two cluster with sensu lato. One of the novel sensu stricto species, designated L. cossartiae sp. nov., contains two subclusters with an average ANI similarity of 94.9%, which were designated as subspecies. The proposed three novel sensu stricto species (including two subspecies) are Listeria farberi sp. nov. (type strain FSL L7-0091T=CCUG 74668T=LMG 31917T; maximum ANI 91.9 % to L. innocua ), Listeria immobilis sp. nov. (type strain FSL L7-1519T=CCUG 74666T=LMG 31920T; maximum ANI 87.4 % to L. ivanovii subsp. londoniensis ) and Listeria cossartiae sp. nov. [subsp. cossartiae (type strain FSL L7-1447T=CCUG 74667T=LMG 31919T; maximum ANI 93.4 % to L. marthii ) and subsp. cayugensis (type strain FSL L7-0993T=CCUG 74670T=LMG 31918T; maximum ANI 94.7 % to L. marthii ). The two proposed novel sensu lato species are Listeria portnoyi sp. nov. (type strain FSL L7-1582T=CCUG 74671T=LMG 31921T; maximum ANI value of 88.9 % to L. cornellensis and 89.2 % to L. newyorkensis ) and Listeria rustica sp. nov. (type strain FSL W9-0585T=CCUG 74665T=LMG 31922T; maximum ANI value of 88.7 % to L. cornellensis and 88.9 % to L . newyorkensis ). L. immobilis is the first sensu stricto species isolated to date that is non-motile. All five of the novel species are non-haemolytic and negative for phosphatidylinositol-specific phospholipase C activity; the draft genomes lack the virulence genes found in Listeria pathogenicity island 1 (LIPI-1), and the internalin genes inlA and inlB, indicating that they are non-pathogenic.
-
-
-
Alkalicella caledoniensis gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from ‘La Crouen’ alkaline thermal spring, New Caledonia
A novel anaerobic, alkaliphilic, mesophilic, Gram-stain-positive, endospore-forming bacterium was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This bacterium, designated strain LB2T, grew at 25–50 °C (optimum, 37 °C) and pH 8.2–10.8 (optimum, pH 9.5). Added NaCl was not required for growth (optimum, 0–1 %) but was tolerated up to 7 %. Strain LB2T utilized a limited range of substrates, such as peptone, pyruvate, yeast extract and xylose. End products detected from pyruvate fermentation were acetate and formate. Both ferric citrate and thiosulfate were used as electron acceptors. Elemental sulphur, nitrate, nitrite, fumarate, sulphate, sulfite and DMSO were not used as terminal electron acceptors. The two major cellular fatty acids were iso-C15 : 0 and C16 : 0. The genome consists of a circular chromosome (3.7 Mb) containing 3626 predicted protein-encoding genes with a G+C content of 36.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate is a member of the family Proteinivoraceae , order Clostridiales within the phylum Firmicutes . Strain LB2T was most closely related to the thermophilic Anaerobranca gottschalkii LBS3T (93.2 % 16S rRNA gene sequence identity). Genome-based analysis of average nucleotide identity and digital DNA–DNA hybridization of strain LB2T with A. gottschalkii LBS3T showed respective values of 70.8 and 13.4 %. Based on phylogenetic, genomic, chemotaxonomic and physiological properties, strain LB2T is proposed to represent the first species of a novel genus, for which the name Alkalicella caledoniensis gen. nov., sp. nov. is proposed (type strain LB2T=DSM 100588T=JCM 30958T).
-
-
-
Streptococcus vicugnae sp. nov., isolated from faeces of alpacas (Vicugna pacos) and cattle (Bos taurus), Streptococcus zalophi sp. nov., and Streptococcus pacificus sp. nov., isolated from respiratory tract of California sea lions (Zalophus californianus)
Four novel independent strains of Streptococcus spp. were isolated from faeces of alpaca (SL1232T), cattle (KCJ4950), and from respiratory tract of wild California sea lions (CSL7508T, CSL7591T). The strains were indole-, oxidase- and catalase-negative, non-spore-forming, non-motile Gram-positive cocci in short and long chains, facultative anaerobes. The 16S rRNA gene of SL1232T and KCJ4950 shared 99.40–99.60% nucleotide similarity to strains of S. equinus, S. lutetiensis, S. infantarius, and the 16S rRNA gene of CSL7508T and CSL7591T demonstrated 98.72 and 98.92% similarity, respectively, to S. marimammalium . All other known Streptococcus species had the 16S rRNA gene sequence similarities of ≤95%. The genomes were sequenced for the novel strains. Average nucleotide identity (ANI) analysis for strains SL1232T and KCJ4950, showed the highest similarity to S. equinus, S. lutetiensis, and S. infantarius with 85.21, 87.17, 88.47, 85.54, 87.47 and 88.89%, respectively, and strains CSL7508T and CSL7591T to S. marimammalium with 87.16 and 83.97%, respectively. Results of ANI were confirmed by pairwise digital DNA–DNA hybridization and phylogeny, which also revealed that the strains belong to three novel species of the genus Streptococcus . Phenotypical features of the novel species were in congruence with closely related members of the genus Streptococcus and gave negative reactions with the tested Lancefield serological groups (A-D, F and G). MALDI-TOF mass spectrometry supported identification of the species. Based on these data, we propose three novel species of the genus Streptococcus , for which the name Streptococcus vicugnae sp. nov. is proposed with the type strain SL1232T (=NCTC 14341T=DSM 110741T=CCUG 74371T), Streptococcus zalophi sp. nov. is proposed with the type strain CSL7508T (=NCTC 14410T=DSM 110742T=CCUG 74374T) and Streptococcus pacificus sp. nov. is proposed with the type strain CSL7591T (=NCTC 14455T=DSM 111148T=CCUG 74655T). The genome G+C content is 36.89, 34.85, and 35.34 % and draft genome sizes are 1906993, 1581094 and 1656080 bp for strains SL1232T, CSL7508T, and CSL7591T, respectively.
-
- Other Bacteria
-
-
Amazonocrinis nigriterrae gen. nov., sp. nov., Atlanticothrix silvestris gen. nov., sp. nov. and Dendronalium phyllosphericum gen. nov., sp. nov., nostocacean cyanobacteria from Brazilian environments
The cyanobacterial genus Nostoc is an important contributor to carbon and nitrogen bioavailability in terrestrial ecosystems and a frequent partner in symbiotic relationships with non-diazotrophic organisms. However, since this currently is a polyphyletic genus, the diversity of Nostoc -like cyanobacteria is considerably underestimated at this moment. While reviewing the phylogenetic placement of previously isolated Nostoc -like cyanobacteria originating from Brazilian Amazon, Caatinga and Atlantic forest samples, we detected 17 strains isolated from soil, freshwater, rock and tree surfaces presenting patterns that diverged significantly from related strains when ecological, morphological, molecular and genomic traits were also considered. These observations led to the identification of the evaluated strains as representative of three novel nostocacean genera and species: Amazonocrinis nigriterrae gen. nov., sp. nov.; Atlanticothrix silvestris gen. nov., sp. nov.; and Dendronalium phyllosphericum gen. nov., sp. nov., which are herein described according to the rules of the International Code of Nomenclature for algae, fungi and plants. This finding highlights the great importance of tropical and equatorial South American ecosystems for harbouring an unknown microbial diversity in the face of the anthropogenic threats with which they increasingly struggle.
-
-
-
'Candidatus Phytoplasma dypsidis', a novel taxon associated with a lethal wilt disease of palms in Australia
A phytoplasma was initially detected in Dypsis poivriana by nested and real-time PCR from the botanical gardens in Cairns, Queensland, Australia in 2017. Further surveys in the Cairns region identified phytoplasma infections in eight additional dying ornamental palm species (Euterpe precatoria, Cocos nucifera, Verschaffeltia splendida, Brassiophoenix drymophloeodes, Burretiokentia hapala, Cyrtostachys renda, Reinhardtia gracilis, Carpoxylon macrospermum), a Phoenix species, a Euterpe species and two native palms (Archontophoenix alexandrae). Analysis of 16S rRNA gene sequences showed that this phytoplasma is distinct as it shared less than 97.5 % similarity with all other ‘Candidatus Phytoplasma’ species. At 96.3 % similarity, the most closely related formally described member of the provisional 'Ca. Phytoplasma' genus was 'Ca. Phytoplasma noviguineense', a novel taxon from the island of New Guinea found in monocotyledonous plants. It was slightly more closely related (96.6–96.8 %) to four palm-infecting strains from the Americas, which belong to strain group 16SrIV and which have not been assigned to a formal 'Candidatus Phytoplasma’ species taxon. Phylogenetic analysis of the 16S rRNA gene and ribosomal protein genes of the phytoplasma isolate from a dying coconut palm revealed that the phytoplasma represented a distinct lineage within the phytoplasma clade. As the nucleotide identity with other phytoplasmas is less than 97.5 % and the phylogenetic analyses show that it is distinct, a novel taxon 'Candidatus Phytoplasma dypsidis' is proposed for the phytoplasma found in Australia. Strain RID7692 (GenBank accession no. MT536195) is the reference strain. The impact and preliminary aspects of the epidemiology of the disease outbreak associated with this novel taxon are described.
-
- Proteobacteria
-
-
Massilia horti sp. nov. and Noviherbaspirillum arenae sp. nov., two novel soil bacteria of the Oxalobacteraceae
More LessWe isolated two new soil bacteria: ONC3T (from garden soil in NC, USA; LMG 31738T=NRRL B-65553T) and M1T (from farmed soil in MI, USA; NRRL B-65551T=ATCC TSD-197T=LMG 31739T) and characterized their metabolic phenotype based on Biolog, MALDI-TOF MS and fatty acid analyses, and compared 16S rRNA and whole genome sequences to other members of the Oxalobacteraceae after sequencing on an Illumina Nextera platform. Based on the results of 16S rRNA sequence analysis, ONC3T shows the highest sequence similarity to Massilia solisilvae J18T (97.8 %), Massilia terrae J11T (97.7 %) and Massilia agilis J9T (97.3 %). Strain M1T is most closely related to Noviherbaspirillum denitrificans TSA40T, Noviherbaspirillum agri K-1-15T and Noviherbaspirillum autotrophicum TSA66T (sequence identity of 98.2, 98.0 and 97.8 %, respectively). The whole genome of ONC3T has an assembled size of 5.62 Mbp, a G+C content of 63.8 mol% and contains 5104 protein-coding sequences, 56 tRNA genes and two rRNA operons. The genome of M1T has a length of 4.71 MBp, a G+C content of 63.81 mol% and includes 4967 protein-coding genes, two rRNA operons and 44 tRNA genes. Whole genome comparisons identified Massilia sp. WG5 with a 79.3 % average nucleotide identity (ANI) and 22.6 % digital DNA–DNA hybridization (dDDH), and Massilia sp. UBA11196 with 78.2 % average amino acid identity (AAI) as the most closely related species to ONC3T. M1T is most closely related to N. autotrophicum TSA66T with an ANI of 80.27 %, or N. denitrificans TSA40T with a dDDH of 22.3 %. The application of community-accepted standards such as <98.7 % in 16S sequence similarity and <95–96 % ANI or 70 % DDH support the classification of Massilia horti ONC3T and Noviherbaspirillum arenae M1T as novel species within the Oxalobacteraceae .
-
-
-
Acinetobacter pollinis sp. nov., Acinetobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov., isolated from floral nectar and honey bees
A detailed evaluation of eight bacterial isolates from floral nectar and animal visitors to flowers shows evidence that they represent three novel species in the genus Acinetobacter . Phylogenomic analysis shows the closest relatives of these new isolates are Acinetobacter apis , Acinetobacter boissieri and Acinetobacter nectaris , previously described species associated with floral nectar and bees, but high genome-wide sequence divergence defines these isolates as novel species. Pairwise comparisons of the average nucleotide identity of the new isolates compared to known species is extremely low (<83 %), thus confirming that these samples are representative of three novel Acinetobacter species, for which the names Acinetobacter pollinis sp. nov., Acinetobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov. are proposed. The respective type strains are SCC477T (=TSD-214T=LMG 31655T), B10AT (=TSD-213T=LMG 31702T) and EC24T (=TSD-215T=LMG 31703T=DSM 111781T).
-
-
-
Pseudomonas campi sp. nov., a nitrate-reducing bacterium isolated from grassland soil
A novel strain was isolated from grassland soil that has the potential to assimilate ammonium by the reduction of nitrate in the presence of oxygen. Whole genome sequence analysis revealed the presence of an assimilatory cytoplasmic nitrate reductase gene nasA and the assimilatory nitrite reductase genes nirBD which are involved in the sequential reduction of nitrate to nitrite and further to ammonium, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represents a member of the genus Pseudomonas . The closest phylogenetic neighbours based on 16S rRNA gene sequence analysis are the type strains of Pseudomonas peli (98.17%) and Pseudomonas guineae (98.03%). In contrast, phylogenomic analysis revealed a close relationship to Pseudomonas alcaligenes . Computation of the average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) with the closest phylogenetic neighbours of S1-A32-2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. On the basis of these results, it was concluded that the soil isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas campi sp. nov. (type strain S1-A32-2T=LMG 31521T=DSM 110222T) is proposed.
-
Volumes and issues
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)