1887

Abstract

Four novel independent strains of spp. were isolated from faeces of alpaca (SL1232), cattle (KCJ4950), and from respiratory tract of wild California sea lions (CSL7508, CSL7591). The strains were indole-, oxidase- and catalase-negative, non-spore-forming, non-motile Gram-positive cocci in short and long chains, facultative anaerobes. The 16S rRNA gene of SL1232 and KCJ4950 shared 99.40–99.60% nucleotide similarity to strains of , and the 16S rRNA gene of CSL7508 and CSL7591 demonstrated 98.72 and 98.92% similarity, respectively, to . All other known species had the 16S rRNA gene sequence similarities of ≤95%. The genomes were sequenced for the novel strains. Average nucleotide identity (ANI) analysis for strains SL1232 and KCJ4950, showed the highest similarity to and with 85.21, 87.17, 88.47, 85.54, 87.47 and 88.89%, respectively, and strains CSL7508 and CSL7591 to with 87.16 and 83.97%, respectively. Results of ANI were confirmed by pairwise digital DNA–DNA hybridization and phylogeny, which also revealed that the strains belong to three novel species of the genus . Phenotypical features of the novel species were in congruence with closely related members of the genus and gave negative reactions with the tested Lancefield serological groups (A-D, F and G). MALDI-TOF mass spectrometry supported identification of the species. Based on these data, we propose three novel species of the genus , for which the name sp. nov. is proposed with the type strain SL1232 (=NCTC 14341=DSM 110741=CCUG 74371), sp. nov. is proposed with the type strain CSL7508 (=NCTC 14410=DSM 110742=CCUG 74374) and sp. nov. is proposed with the type strain CSL7591 (=NCTC 14455=DSM 111148=CCUG 74655). The genome G+C content is 36.89, 34.85, and 35.34 % and draft genome sizes are 1906993, 1581094 and 1656080 bp for strains SL1232, CSL7508, and CSL7591, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004826
2021-05-17
2024-03-29
Loading full text...

Full text loading...

References

  1. Whiley RA, Hardie JM. Streptococcus. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015pp1–86
    [Google Scholar]
  2. Numberger D, Siebert U, Fulde M, Valentin-Weigand P. Streptococcal infections in marine mammals. Microorganisms 2021; 9:350 [View Article][PubMed]
    [Google Scholar]
  3. Taurisano ND, Butler BP, Stone D, Hariharan H, Fields PJ. Streptococcus phocae in marine mammals of northeastern pacific and arctic Canada: A retrospective analysis of 85 postmortem investigations. J Wildl Dis 2018; 54:101–111 [View Article][PubMed]
    [Google Scholar]
  4. Corpa JM, Carvallo F, Anderson ML, Nyaoke AC, Moore JD. Streptococcus equi subspecies zooepidemicus septicemia in alpacas: three cases and review of the literature. J Vet Diagn Invest 2018; 30:598–602 [View Article][PubMed]
    [Google Scholar]
  5. Jones M, Miesner M, Grondin T. Outbreak of Streptococcus equi ssp. zooepidemicus polyserositis in an alpaca herd. J Vet Intern Med 2009; 23:220–223 [View Article][PubMed]
    [Google Scholar]
  6. Muhldorfer K, Szentiks CA, Wibbelt G, van der Linden M, Ewers C. Streptococcus catagoni sp. nov., isolated from the respiratory tract of diseased Chacoan peccaries (Catagonus wagneri). Int J Syst Evol Microbiol 2020; 70:5734–5739
    [Google Scholar]
  7. Twomey DF, Aktan I, Boon JD, Higgins RJ, La Ragione RM. Streptococcus bovis biotype I meningoencephalitis in an alpaca (Lama pacos) cria. Vet Rec 2007; 160:337–339 [View Article][PubMed]
    [Google Scholar]
  8. Lee K, Kim JY, Jung SC, Lee HS, Her M. First isolation of Streptococcus halichoeri and Streptococcus phocae from a Steller Sea Lion (Eumetopias jubatus) in South Korea. J Wildl Dis 2016; 52:183–185 [View Article][PubMed]
    [Google Scholar]
  9. Akineden O, Alber J, Lammler C, Weiss R, Siebert U. Relatedness of Streptococcus equi subsp. zooepidemicus strains isolated from harbour seals (Phoca vitulina) and grey seals (Halichoerus grypus) of various origins of the North Sea during 1988-2005. Vet Microbiol 2007; 121:158–162
    [Google Scholar]
  10. Lawson PA, Foster G, Falsen E, Collins MD. Streptococcus marimammalium sp. nov., isolated from seals. Int J Syst Evol Microbiol 2005; 55:271–274 [View Article][PubMed]
    [Google Scholar]
  11. Seguel M, Gutierrez J, Hernandez C, Montalva F, Verdugo C. Respiratory mites (Orthohalarachne diminuata) and beta-hemolytic Streptococci-associated bronchopneumonia outbreak in south american fur seal pups (Arctocephalus australis. J Wildl Dis 2018; 54:380–385
    [Google Scholar]
  12. Richards VP, Velsko IM, Alam T, Zadoks RN, Manning SD. Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae. Mol Biol Evol 2019; 36:2572–2590 [View Article]
    [Google Scholar]
  13. Lawson PA, Foster G, Falsen E, Davison N, Collins MD. Streptococcus halichoeri sp. nov., isolated from grey seals (Halichoerus grypus. Int J Syst Evol Microbiol 2004; 54:1753–1756 [View Article][PubMed]
    [Google Scholar]
  14. Sonne C, Lakemeyer J, Desforges JP, Eulaers I, Persson S. A review of pathogens in selected Baltic Sea indicator species. Environ Int 2020; 137:105565 [View Article][PubMed]
    [Google Scholar]
  15. Spraker TR, Kuzmina TA, DeLong RL. Causes of mortality in northern elephant seal pups on San Miguel Island, California. J Vet Diagn Invest 2020; 32:312–316 [View Article][PubMed]
    [Google Scholar]
  16. Thornton SM, Nolan S, Gulland FM. Bacterial isolates from California sea lions (Zalophus californianus), harbor seals (Phoca vitulina), and northern elephant seals (Mirounga angustirostris) admitted to a rehabilitation center along the central California coast, 1994-1995. J Zoo Wildl Med 1998; 29:171–176[PubMed]
    [Google Scholar]
  17. Johnson S, Lowenstine L, Gulland F, Jang S, Imai D. Aerobic bacterial flora of the vagina and prepuce of California sea lions (Zalophus californianus) and investigation of associations with urogenital carcinoma. Vet Microbiol 2006; 114:94–103 [View Article][PubMed]
    [Google Scholar]
  18. Twomey DF, Carson T, Foster G, Koylass MS, Whatmore AM. Phenotypic characterisation and 16S rRNA sequence analysis of veterinary isolates of Streptococcus pluranimalium. Vet J 2012; 192:236–238 [View Article][PubMed]
    [Google Scholar]
  19. Tavella A, Bettini A, Cocchi M, Idrizi I, Colorio S. Isolation of Streptococcus agalactiae in a female llama (Lama glama) in South Tyrol (Italy). BMC Vet Res 2018; 14:343 [View Article][PubMed]
    [Google Scholar]
  20. Schlegel L, Grimont F, Ageron E, Grimont PAD, Bouvet A. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int J Syst Evol Microbiol 2003; 53:631–645 [View Article][PubMed]
    [Google Scholar]
  21. Volokhov DV, Amselle M, Beck BJ, Popham DL, Whittaker P. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis. Int J Syst Evol Microbiol 2012; 62:2068–2076 [View Article][PubMed]
    [Google Scholar]
  22. Volokhov DV, Simonyan V, Davidson MK, Chizhikov VE. RNA polymerase beta subunit (rpoB) gene and the 16S-23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae. Mol Phylogenet Evol 2012; 62:515–528 [View Article][PubMed]
    [Google Scholar]
  23. Harasawa R, Imada Y, Ito M, Koshimizu K, Cassell GH. Ureaplasma felinum sp. nov. and Ureaplasma cati sp. nov. isolated from the oral cavities of cats. Int J Syst Bacteriol 1990; 40:45–51 [View Article][PubMed]
    [Google Scholar]
  24. Talley LD. n.d Salinity patterns in the Ocean. Encyclopedia of Global Environmental Change 2002:629–640
    [Google Scholar]
  25. Emery WJ. n.d Water types and water masses. Ocean circulation1556–1567
    [Google Scholar]
  26. Swanson J, Hsu KC, Gotschlich EC. Electron microscopic studies on streptococci. J Exp Med 1969; 130:1063–1091 [View Article][PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  29. Morales-Covarrubias MS, Del Carmen Bolan-Mejia M, Vela Alonso AI, Fernandez-Garayzabal JF, Gomez-Gil B. Streptococcus penaeicida sp. nov., isolated from a diseased farmed Pacific white shrimp (Penaeus vannamei. Int J Syst Evol Microbiol 2018; 68:1490–1495 [View Article]
    [Google Scholar]
  30. Huch M, De Bruyne K, Cleenwerck I, Bub A, Cho GS. Streptococcus rubneri sp. nov., isolated from the human throat. Int J Syst Evol Microbiol 2013; 63:4026–4032 [View Article][PubMed]
    [Google Scholar]
  31. Arbique JC, Poyart C, Trieu-Cuot P, Quesne G, Carvalho Mda G. Accuracy of phenotypic and genotypic testing for identification of Streptococcus pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J Clin Microbiol 2004; 42:4686–4696 [View Article]
    [Google Scholar]
  32. Ochman H, Elwyn S, Moran NA. Calibrating bacterial evolution. Proc Natl Acad Sci USA 1999; 96:12638–12643 [View Article][PubMed]
    [Google Scholar]
  33. Pontigo F, Moraga M, Flores SV. Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res 2015; 14:10905–10918
    [Google Scholar]
  34. Pompilio A, Di Bonaventura G, Gherardi G. An overview on Streptococcus bovis/Streptococcus equinus complex isolates: identification to the species/subspecies level and antibiotic resistance. Int J Mol Sci 2019; 20:480 [View Article]
    [Google Scholar]
  35. Poyart C, Quesne G, Trieu-Cuot P. Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of “Streptococcus infantarius subsp. coli” as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov. Int J Syst Evol Microbiol 2002; 52:1247–1255 [View Article][PubMed]
    [Google Scholar]
  36. Patel S, Gupta RS. Robust demarcation of fourteen different species groups within the genus Streptococcus based on genome-based phylogenies and molecular signatures. Infect Genet Evol 2018; 66:130–151 [View Article][PubMed]
    [Google Scholar]
  37. Dekker JP, Lau AF. An Update on the Streptococcus bovis group: classification, identification, and disease associations. J Clin Microbiol 2016; 54:1694–1699 [View Article][PubMed]
    [Google Scholar]
  38. Bik EM, Costello EK, Switzer AD, Callahan BJ, Holmes SP. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun 2016; 7:10516 [View Article][PubMed]
    [Google Scholar]
  39. Shakya M, Ahmed SA, Davenport KW, Flynn MC, CC L. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep 2020; 10:1723
    [Google Scholar]
  40. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using spades de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article][PubMed]
    [Google Scholar]
  41. Simonyan V, Chumakov K, Dingerdissen H, Faison W, Goldweber S. High-performance Integrated Virtual Environment (HIVE): a Robust Infrastructure for Next-Generation Sequence Data Analysis Database (Oxford); 2016 p 022
    [Google Scholar]
  42. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  43. Blom J, Glaeser SP, Juhre T, Kreis J, Hanel PH. EDGAR: a versatile tool for phylogenomics. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2019 https://doi.org/10.1002/9781118960608.bm00038
    [Google Scholar]
  44. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  45. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131
    [Google Scholar]
  46. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article][PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60
    [Google Scholar]
  48. Palmer M, Venter SN, McTaggart AR, Coetzee MPA, Van Wyk S et al. The synergistic effect of concatenation in phylogenomics: The case in Pantoea. PeerJ 2019; 7:e6698 [View Article][PubMed]
    [Google Scholar]
  49. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  50. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  51. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116 [View Article]
    [Google Scholar]
  52. Medlar AJ, Toronen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:479–485 [View Article]
    [Google Scholar]
  53. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–5264 [View Article][PubMed]
    [Google Scholar]
  54. Furuno M, Kasukawa T, Saito R, Adachi J, Suzuki H. CDS annotation in full-length cDNA sequence. Genome Res 2003; 13:1478–1487 [View Article][PubMed]
    [Google Scholar]
  55. Xu L, Dong Z, Fang L, Luo Y, Wei Z. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:52–58
    [Google Scholar]
  56. Blom J, Kreis J, Spanig S, Juhre T, Bertelli C. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:22–28 [View Article]
    [Google Scholar]
  57. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article][PubMed]
    [Google Scholar]
  58. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:687–692
    [Google Scholar]
  59. Cosentino S, Voldby Larsen M, Moller Aarestrup F, Lund O. PathogenFinder -distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013; 8:e77302
    [Google Scholar]
  60. Klein RS, Catalano MT, Edberg SC, Casey JI. Streptococcus equinus septicemia: report of two cases and review of the literature. Am J Med Sci 1980; 279:99–103 [View Article][PubMed]
    [Google Scholar]
  61. Elliott PM, Williams H, Brooksby IA. A case of infective endocarditis in a farmer caused by Streptococcus equinus. Eur Heart J 1993; 14:1292–1293 [View Article][PubMed]
    [Google Scholar]
  62. Sechi LA, Ciani R. Streptococcus equinus endocarditis in a patient with pulmonary histiocytosis X. Scand J Infect Dis 1999; 31:598–600 [View Article][PubMed]
    [Google Scholar]
  63. Schulthess B, Brodner K, Bloemberg GV, Zbinden R, Bottger EC. Identification of Gram-positive cocci by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry: comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. J Clin Microbiol 2013; 51:1834–1840 [View Article]
    [Google Scholar]
  64. Perez-Sancho M, Vela AI, Garcia-Seco T, Gonzalez S, Dominguez L. Usefulness of MALDI-TOF MS as a diagnostic tool for the identification of Streptococcus species recovered from clinical specimens of pigs. PLoS One 2017; 12:e0170784 [View Article]
    [Google Scholar]
  65. Muhldorfer K, Rau J, Fawzy A, Heydel C, Glaeser SP. Streptococcus castoreus, an uncommon group A Streptococcus in beavers. Antonie van Leeuwenhoek 2019; 112:1663–1673 [View Article]
    [Google Scholar]
  66. Rau J, Eisenberg T, Male A, Wind C, Lasch P. MALDI-UP – An internet platform for the exchange of MALDI-TOF mass spectra. Aspects of Food Control and Animal Health 2016; 1:1–17
    [Google Scholar]
  67. Martinez-Lamas L, Limeres-Posse J, Diz-Dios P, Alvarez-Fernandez M. Streptococcus downii sp. nov., isolated from the oral cavity of a teenager with Down syndrome. Int J Syst Evol Microbiol 2020; 70:4098–4104 [View Article]
    [Google Scholar]
  68. MacFadyen AC, Waller AS, Paterson GK. Streptococcus hillyeri sp. nov., isolated from equine trachea. Int J Syst Evol Microbiol 2019; 69:3009–3013 [View Article][PubMed]
    [Google Scholar]
  69. de Vries SPW, Hadjirin NF, Lay EM, Zadoks RN, Peacock SJ. Streptococcus bovimastitidis sp. nov., isolated from a dairy cow with mastitis. Int J Syst Evol Microbiol 2018; 68:21–27 [View Article][PubMed]
    [Google Scholar]
  70. Zamora L, Perez-Sancho M, Fernandez-Garayzabal JF, Orden JA, Dominguez-Bernal G. Streptococcus ovuberis sp. nov., isolated from a subcutaneous abscess in the udder of a sheep. Int J Syst Evol Microbiol 2017; 67:4340–4344
    [Google Scholar]
  71. Saito M, Shinozaki-Kuwahara N, Hirasawa M, Takada K. Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin. Int J Syst Evol Microbiol 2016; 66:1063–1067 [View Article][PubMed]
    [Google Scholar]
  72. Kampfer P, Glaeser SP. Prokaryotic taxonomy in the sequencing era - the polyphasic approach revisited. Environ Microbiol 2012; 14:291–317 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004826
Loading
/content/journal/ijsem/10.1099/ijsem.0.004826
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error