1887

Abstract

Five novel bacterial strains, Marseille-P1476 (=CSURP1476=DSM 100642), Marseille-P3256 (=CSURP3256=CECT 9977), Marseille-P2936 (=CSURP2936=DSM 103159), Marseille-P2912 (=CSURP2912=DSM 103345) and Marseille-P3197 (=CSURP3197=CCUG 71847), were isolated from various human specimens. These five strains were not identified at the species level by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Following 16S rRNA gene sequence comparisons with the GenBank database, the highest nucleotide sequence similarities of all studied strains were obtained to members of the paraphyletic genus . A polyphasic taxono-genomic strategy (16S rRNA gene-based and core genome-based phylogeny, genomic comparison, phenotypic and biochemical characteristics) enabled us to better classify these strains and reclassify species. Among the studied strains, Marseille-P1476, Marseille-P2936 and Marseille-P3197 belonged to new species of the genus for which we propose the names sp. nov., sp. nov. and sp. nov., respectively. Strains Marseille-P2912 and Marseille-P3256 belonged to a new genus for which the names gen. nov., sp. nov. and gen. nov., sp. nov. are proposed, respectively. We also propose the creation of the genera gen. nov., gen. nov. and gen. nov. and the reclassification of as comb. nov., as comb. nov., and as comb. nov.

Funding
This study was supported by the:
  • Fondation Méditerranée Infection (Award None)
    • Principle Award Recipient: DidierRaoult
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004819
2021-05-28
2024-04-24
Loading full text...

Full text loading...

References

  1. Dewhirst FE, Paster BJ, Tzellas N, Coleman B, Downes J et al. Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol 2001; 51:1797–1804 [View Article]
    [Google Scholar]
  2. Kraatz M, Wallace RJ, Svensson L. Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa . Int J Syst Evol Microbiol 2011; 61:795–803 [View Article]
    [Google Scholar]
  3. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2007; 2018:9
    [Google Scholar]
  4. Morand A, Chabrol B, Fournier P-E. Olsenella urininfantis”, a new bacterial species isolated from a urine sample of a 26-day-old boy suffering from gastroesophageal reflux. Hum Microbiome J 2016; 2:17–18 [View Article]
    [Google Scholar]
  5. Ricaboni D, Mailhe M, Vitton V, Bittar F, Raoult D et al. Olsenella provencensis sp. nov., Olsenella phocaeensis sp. nov., and Olsenella mediterranea sp. nov. isolated from the human colon. Hum Microbiome J 2017; 4:22–23 [View Article]
    [Google Scholar]
  6. Ndongo S, Tall ML, Ngom II, Delerce J, Levasseur A et al. Olsenella timonensis sp. nov., a new bacteria species isolated from the human gut microbiota. New Microbes and New Infect 2019; 32:100610 [View Article]
    [Google Scholar]
  7. Bilen M, Cadoret F, Dubourg G, Daoud Z, Fournier PE et al. Olsenella congonensis’ sp. nov., identified in human stool sample. New Microbes New Infect 2017; 19:132–133 [View Article]
    [Google Scholar]
  8. Bordigoni A, Lo CI, Yimagou EK, Nicaise B, Diop K et al. Two new bacteria isolated from vagina of a patient with vaginosis: Atopobium massiliense sp. nov. and Butyricimonas vaginalis sp. nov. New Microbes New Infect 2020; 38:100771 [View Article][PubMed]
    [Google Scholar]
  9. Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012; 18:1185–1193 [View Article]
    [Google Scholar]
  10. Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237–264 [View Article]
    [Google Scholar]
  11. Lagier J-C, Khelaifia S, Azhar EI, Croce O, Bibi F et al. Genome sequence of Oceanobacillus picturae strain S1, an halophilic bacterium first isolated in human gut. Stand Genomic Sci 2015; 10:91 [View Article]
    [Google Scholar]
  12. Hadjadj L, Rathored J, Keita MB, Michelle C, Levasseur A et al. Non contiguous-finished genome sequence and description of Microbacterium gorillae sp. nov. Stand Genomic Sci 2016; 11:32 [View Article]
    [Google Scholar]
  13. Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R et al. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 2008; 3:e2843 [View Article]
    [Google Scholar]
  14. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article]
    [Google Scholar]
  15. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral J-P et al. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 2000; 38:3623–3630 [View Article]
    [Google Scholar]
  16. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  19. Anani H, Abou Abdallah R, Chelkha N, Fontanini A, Ricaboni D et al. Draft genome and description of Merdibacter massiliensis gen.nov., sp. nov., a new bacterium genus isolated from the human ileum. Sci Rep 2019; 9:7931 [View Article]
    [Google Scholar]
  20. Anani H, Abdallah RA, Khoder M, Fontanini A, Mailhe M et al. Colibacter massiliensis gen. nov. sp. nov., a novel Gram-stain-positive anaerobic Diplococcal bacterium, isolated from the human left colon. Sci Rep 2019; 9:17199 [View Article]
    [Google Scholar]
  21. Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 2014; 20:O255–O266 [View Article]
    [Google Scholar]
  22. Rosenblatt JE, Gustafson DR. Evaluation of the Etest for susceptibility testing of anaerobic bacteria. Diagn Microbiol Infect Dis 1995; 22:279–284 [View Article]
    [Google Scholar]
  23. Sasser M Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME); 2006
  24. Dione N, Sankar SA, Lagier J-C, Khelaifia S, Michele C et al. Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes Infect 2016; 10:66–76 [View Article]
    [Google Scholar]
  25. Anani H, Raoult D, Fournier P-E. Whole-Genome Sequence of Haloimpatiens lingqiaonensis Strain P8956. Microbiol Resour Announc 2019; 8:e00699–19, /mra/8/43/MRA.00699-19.atom [View Article]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  28. Zgheib R, Anani H, Raoult D, Fournier P-E. Draft genome sequence of Salirhabdus euzebyi strain Q1438. Microbiol Resour Announc 2020; 9:e00246–20 [View Article]
    [Google Scholar]
  29. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  30. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article]
    [Google Scholar]
  31. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article]
    [Google Scholar]
  32. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  33. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Phil Trans R Soc B 2006; 361:1929–1940 [View Article]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  35. Neumann-Cip A-C, Fingerle V, Margos G, Straubinger RK, Overzier E et al. A novel rapid sample preparation method for MALDI-TOF MS permits Borrelia burgdorferi sensu lato species and isolate differentiation. Front Microbiol 2020; 11: [View Article]
    [Google Scholar]
  36. Gupta RS, Chen WJ, Adeolu M, Chai Y. Molecular signatures for the class Coriobacteriia and its different clades; proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. Int J Syst Evol Microbiol 2013; 63:3379–3397 [View Article]
    [Google Scholar]
  37. Li X, Jensen RL, Højberg O, Canibe N, Jensen BB. Olsenella scatoligenes sp. nov., a 3-methylindole- (skatole) and 4-methylphenol- (p-cresol) producing bacterium isolated from pig faeces. Int J Syst Evol Microbiol 2015; 65:1227–1233 [View Article]
    [Google Scholar]
  38. Han K-I, Lee KC, Eom MK, Kim J-S, Suh MK et al. Olsenella faecalis sp. nov., an anaerobic actinobacterium isolated from human faeces. Int J Syst Evol Microbiol 2019; 69:2323–2328 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004819
Loading
/content/journal/ijsem/10.1099/ijsem.0.004819
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error