-
Volume 156,
Issue 1,
2010
Volume 156, Issue 1, 2010
- Physiology And Biochemistry
-
-
-
Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture
More LessThis study investigates the link between adaptation to biocides and antibiotics in Pseudomonas aeruginosa. An enrichment continuous culture of P. aeruginosa NCIMB 10421 (MIC 25 mg BKC l−1) was operated (D=0.04 h−1, 792 h) with added benzalkonium chloride (BKC). A derivative, PA-29 (696 h), demonstrated a >12-fold decrease in sensitivity to the biocide (MIC >350 mg BKC l−1). The variant demonstrated a 256-fold increase in resistance to ciprofloxacin, with a mutation in the gyrA gene (Thr-83→Ile). Similarly, culturing of the original strain in a continuous-culture system with ciprofloxacin selection pressure led to the evolution of BKC-adapted populations (MIC 100 mg BKC l−1). Efflux pump activity predominantly contributed to the developed phenotype of PA-29. An amino acid substitution (Val-51→Ala) in nfxB, the Mex efflux system regulator gene, was observed for PA-29. Overexpression of both MexAB-OprM and MexCD-OprJ was recorded for PA-29. Similarly, mexR, a repressor of the Mex system, was downregulated. Competition studies were carried out in continuous culture between PA-29 and the original strain (in the presence of subinhibitory concentrations of BKC). The outcome of competition was influenced by the concentration of biocide used and the nature of limiting nutrient. The inclusion of 1 mg BKC l−1 in the medium feed was sufficient to select (S=0.011) for the BKC-adapted strain in magnesium-limited culture. Conversely, the presence of 10 mg BKC l−1 in the medium supply was insufficient to select for the same organism (S=−0.017) in the glucose-limited culture. These results indicate the importance of environmental conditions on selection and maintenance of biocide adaptation.
-
-
-
-
Regulation of the dauBAR operon and characterization of d-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1
More LessA unique d-to-l racemization of arginine by coupled arginine dehydrogenases DauA and DauB encoded by the dauBAR operon has been recently reported as a prerequisite for d-arginine utilization as the sole source of carbon and nitrogen through l-arginine catabolic pathways in P. aeruginosa. In this study, enzymic properties of the catabolic FAD-dependent d-amino acid dehydrogenase DauA and the physiological functions of the dauBAR operon were further characterized with other d-amino acids. These results establish DauA as a d-amino acid dehydrogenase of broad substrate specificity, with d-Arg and d-Lys as the two most effective substrates, based on the kinetic parameters. In addition, expression of dauBAR is specifically induced by exogenous d-Arg and d-Lys, and mutations in the dauBAR operon affect utilization of these two amino acids alone. The function of DauR as a repressor in the control of the dauBAR operon was demonstrated by dauB promoter activity measurements in vivo and mobility shift assays with purified His-tagged protein in vitro. The potential effect of 2-ketoarginine (2-KA) derived from d-Arg deamination by DauA as a signal molecule in dauBAR induction was first revealed by mutation analysis and further supported by its in vitro effect on alleviation of DauR–DNA interactions. Through sequence analysis, putative DauR operators were identified and confirmed by mutation analysis. Induction of the dauBAR operon to the maximal level was found to require the l-arginine-responsive regulator ArgR, as supported by the loss of inductive effect by l-Arg on dauBAR expression in the argR mutant and binding of purified ArgR to the dauB regulatory region in vitro. In summary, this study establishes that optimal induction of the dauBAR operon requires relief of DauR repression by 2-KA and activation of ArgR by l-Arg as a result of d-Arg racemization by the encoded DauA and DauB.
-
-
-
Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability
More LessThe ability of Mycobacterium tuberculosis to persist in its human host despite extensive chemotherapy is thought to be based on subpopulations of non-replicating phenotypically drug-resistant bacilli. To study the non-growing pathogen, culture models that generate quiescent organisms by either oxygen depletion in nutrient-rich medium (Wayne model) or nutrient deprivation in oxygen-rich medium (Loebel model) have been developed. In contrast to the energy metabolism of Wayne bacilli, little is known about Loebel bacilli. Here we analysed M. tuberculosis under nutrient-starvation conditions. Upon shifting to the non-replicating state the pathogen maintained a fivefold reduced but constant intracellular ATP level. Chemical probing of the F0F1 ATP synthase demonstrated the importance of this enzyme for ATP homeostasis and viability of the nutrient-starved organism. Surprisingly, the specific ATP synthase inhibitor TMC207 did not affect viability and only moderately reduced the intracellular ATP level of nutrient-starved organisms. Depletion of oxygen killed Loebel bacilli, whereas death was prevented by nitrate, suggesting that respiration and an exogenous electron acceptor are required for maintaining viability. Nutrient-starved bacilli lacking the glyoxylate shunt enzyme isocitrate lyase failed to reduce their intracellular ATP level and died, thus establishing a link between ATP control and intermediary metabolism. We conclude that reduction of the ATP level might be an important step in the adaptation of M. tuberculosis to non-growing survival.
-
-
-
A distinct physiological role of MutY in mutation prevention in mycobacteria
Oxidative damage to DNA results in the occurrence of 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. In eubacteria, repair of such damage is initiated by two major base-excision repair enzymes, MutM and MutY. We generated a MutY-deficient strain of Mycobacterium smegmatis to investigate the role of this enzyme in DNA repair. The MutY deficiency in M. smegmatis did not result in either a noteworthy susceptibility to oxidative stress or an increase in the mutation rate. However, rifampicin-resistant isolates of the MutY-deficient strain showed distinct mutations in the rifampicin-resistance-determining region of rpoB. Besides the expected C to A (or G to T) mutations, an increase in A to C (or T to G) mutations was also observed. Biochemical characterization of mycobacterial MutY (M. smegmatis and M. tuberculosis) revealed an expected excision of A opposite 8-oxoG in DNA. Additionally, excision of G and T opposite 8-oxoG was detected. MutY formed complexes with DNA containing 8-oxoG : A, 8-oxoG : G or 8-oxoG : T but not 8-oxoG : C pairs. Primer extension reactions in cell-free extracts of M. smegmatis suggested error-prone incorporation of nucleotides into the DNA. Based on these observations, we discuss the physiological role of MutY in specific mutation prevention in mycobacteria.
-
-
-
myo-Inositol transport by Salmonella enterica serovar Typhimurium
More LessIn Salmonella enterica serovar Typhimurium, the genomic island GEI4417/4436 has recently been identified to be responsible for myo-inositol (MI) utilization. Here, two of the four island-encoded permeases are identified as the MI transporters of this pathogen. In-frame deletion of iolT1 (STM4418) led to a severe growth defect, and deletion of iolT1 (STM4419) to a slight growth defect in the presence of MI. These phenotypes could be complemented by providing the putative transporter genes in trans. Bioluminescence-based reporter assays demonstrated a strong induction of their promoters P iolT1 and P iolT2 in the presence of MI but not of glucose. Deletion of iolR, which encodes the negative regulator of most genes involved in MI degradation, resulted in upregulation of P iolT1 and P iolT2 , indicating that the expression of IolT1 and IolT2 is repressed by IolR. This finding was supported by bandshift assays using purified IolR. Both transporters are located in the membrane when expressed in Escherichia coli. Heterologously expressed IolT1 had its optimal activity at pH 5.5. Together with the strongly reduced MI uptake in the presence of protonophores, this indicates that IolT1 operates as a proton symporter. Using myo-[1,2-[3H](N)]inositol, a saturable uptake activity of IolT1 with a K m value between 0.49 and 0.79 mM was determined in DH5α expressing IolT1, in S. enterica serovar Typhimurium strain 14028, and in mutant 14028 ΔiolT2. Phylogenetic analysis of IolT1 identified putative MI transporters in Gram-negative bacteria also able to utilize MI.
-
-
-
SMc01553 is the sixth acyl carrier protein in Sinorhizobium meliloti 1021
Acyl carrier proteins (ACPs) are required for the transfer of acyl intermediates during fatty acid and polyketide syntheses. In Sinorhizobium meliloti 1021 there are five known ACPs: AcpP, NodF, AcpXL, the ACP domain in RkpA and SMb20651. The genome sequence of S. meliloti 1021 also reveals the ORF SMc01553, annotated as a putative ACP. smc01553 is part of a 6.6 kb DNA region that is duplicated in the chromosome and in the pSymb plasmid, the result of a recent duplication event. SMc01553 overexpressed in Escherichia coli was labelled in vivo with [3H]β-alanine, a biosynthetic building block of the 4′-phosphopantetheine prosthetic group of ACPs. The purified SMc01553 was modified with 4′-phosphopantetheine in the presence of S. meliloti holo-ACP synthase, and this modification resulted in a major conformational change of the protein structure, since the holo-form runs faster in native PAGE than the apo-form. SMc01553 could not be loaded with a malonyl group by malonyl-CoA-ACP transacylase from S. meliloti. Using RT-PCR we could show the presence of mRNA for SMc01553 and of the duplicated ORF SMb22007 in cultures of S. meliloti. However, a mutant in which the two duplicated regions were deleted did not show any different phenotype with respect to the wild-type in the free-living or symbiotic lifestyle.
-
-
-
Characterization of a broad-host-range flagellum-dependent phage that mediates high-efficiency generalized transduction in, and between, Serratia and Pantoea
A phage (ΦOT8) isolated on Serratia sp. ATCC 39006 was shown to be flagellum-dependent, and to mediate generalized transduction with high efficiency (up to 10−4 transductants per p.f.u.). ΦOT8 was shown to have a broad host range because it also infected a strain of Pantoea agglomerans isolated from the rhizosphere. Transduction of plasmid-borne antibiotic resistance between the two bacterial genera was demonstrated, consistent with purported ecological roles of phages in dissemination of genes between bacterial genera. Serratia sp. ATCC 39006 and P. agglomerans produce a number of interesting secondary metabolites that have potential applications in cancer therapy and biocontrol of fungal infections. ΦOT8 has utility as a powerful functional genomics tool in these bacteria.
-
-
-
Hydrophobic carboxy-terminal residues dramatically reduce protein levels in the haloarchaeon Haloferax volcanii
More LessProteolysis is important not only to cell physiology but also to the successful development of biocatalysts. While a wide-variety of signals are known to trigger protein degradation in bacteria and eukaryotes, these mechanisms are poorly understood in archaea, known for their ability to withstand harsh conditions. Here we present a systematic study in which single C-terminal amino acid residues were added to a reporter protein and shown to influence its levels in an archaeal cell. All 20 amino acid residues were examined for their impact on protein levels, using the reporter protein soluble modified red-shifted GFP (smRS-GFP) expressed in the haloarchaeon Haloferax volcanii as a model system. Addition of hydrophobic residues, including Leu, Cys, Met, Phe, Ala, Tyr, Ile and Val, gave the most pronounced reduction in smRS-GFP levels compared with the addition of either neutral or charged hydrophilic residues. In contrast to the altered protein levels, the C-terminal alterations had no influence on smRS-GFP-specific transcript levels, thus revealing that the effect is post-transcriptional.
-
-
-
Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota
More LessTwo new autotrophic carbon fixation cycles have been recently described in Crenarchaeota. The 3-hydroxypropionate/4-hydroxybutyrate cycle using acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the carboxylating enzyme has been identified for (micro)aerobic members of the Sulfolobales. The dicarboxylate/4-hydroxybutyrate cycle using oxygen-sensitive pyruvate synthase and phosphoenolpyruvate carboxylase as carboxylating enzymes has been found in members of the anaerobic Desulfurococcales and Thermoproteales. However, Sulfolobales include anaerobic and Desulfurococcales aerobic autotrophic representatives, raising the question of which of the two cycles they use. We studied the mechanisms of autotrophic CO2 fixation in the strictly anaerobic Stygiolobus azoricus (Sulfolobales) and in the facultatively aerobic Pyrolobus fumarii (Desulfurococcales). The activities of all enzymes of the 3-hydroxypropionate/4-hydroxybutyrate cycle were found in the anaerobic S. azoricus. In contrast, the aerobic or denitrifying P. fumarii possesses all enzyme activities of the dicarboxylate/4-hydroxybutyrate cycle. We conclude that autotrophic Crenarchaeota use one of the two cycles, and that their distribution correlates with the 16S rRNA-based phylogeny of this group, rather than with the aerobic or anaerobic lifestyle.
-
-
-
Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus
More LessMuscodor crispans is a recently described novel endophytic fungus of Ananas ananassoides (wild pineapple) growing in the Bolivian Amazon Basin. The fungus produces a mixture of volatile organic compounds (VOCs); some of the major components of this mixture, as determined by GC/MS, are propanoic acid, 2-methyl-, methyl ester; propanoic acid, 2-methyl-; 1-butanol, 3-methyl-;1-butanol, 3-methyl-, acetate; propanoic acid, 2-methyl-, 2-methylbutyl ester; and ethanol. The fungus does not, however, produce naphthalene or azulene derivatives as has been observed with many other members of the genus Muscodor. The mixture of VOCs produced by M. crispans cultures possesses antibiotic properties, as does an artificial mixture of a majority of the components. The VOCs of the fungus are effective against a wide range of plant pathogens, including the fungi Pythium ultimum, Phytophthora cinnamomi, Sclerotinia sclerotiorum and Mycosphaerella fijiensis (the black sigatoka pathogen of bananas), and the serious bacterial pathogen of citrus, Xanthomonas axonopodis pv. citri. In addition, the VOCs of M. crispans killed several human pathogens, including Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Artificial mixtures of the fungal VOCs were both inhibitory and lethal to a number of human and plant pathogens, including three drug-resistant strains of Mycobacterium tuberculosis. The gaseous products of Muscodor crispans potentially could prove to be beneficial in the fields of medicine, agriculture, and industry.
-
-
-
A tyrosine O-prenyltransferase catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL
More LessA putative prenyltransferase gene sirD has been identified in the gene cluster encoding the biosynthesis of the phytotoxin sirodesmin PL in Leptosphaeria maculans. The gene product was found to comprise 449 aa, with a molecular mass of 51 kDa. In this study, the coding region of sirD was amplified by PCR from cDNA, cloned into pQE70, and overexpressed in Escherichia coli. The overproduced protein was purified to apparent homogeneity, and characterized biochemically. The dimeric recombinant SirD was found to catalyse the O-prenylation of l-Tyr in the presence of dimethylallyl diphosphate; this was demonstrated unequivocally by isolation and structural elucidation of the enzymic product. Therefore, SirD catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL. K m values for l-Tyr and dimethylallyl diphosphate were determined as 0.13 and 0.17 mM, respectively. Interestingly, SirD was found to share significant sequence similarity with indole prenyltransferases, which catalyse prenyl transfer reactions onto different positions of indole rings. In contrast to indole prenyltransferases, which accept indole derivatives, but not Tyr or structures derived thereof, as substrates, SirD also prenylated l-Trp, resulting in the formation of 7-dimethylallyltryptophan. A K m value of 0.23 mM was determined for l-Trp. Turnover numbers of 1.0 and 0.06 S−1 were calculated for l-Tyr and l-Trp, respectively.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
