1887

Abstract

A phage (ΦOT8) isolated on sp. ATCC 39006 was shown to be flagellum-dependent, and to mediate generalized transduction with high efficiency (up to 10 transductants per p.f.u.). ΦOT8 was shown to have a broad host range because it also infected a strain of isolated from the rhizosphere. Transduction of plasmid-borne antibiotic resistance between the two bacterial genera was demonstrated, consistent with purported ecological roles of phages in dissemination of genes between bacterial genera. sp. ATCC 39006 and produce a number of interesting secondary metabolites that have potential applications in cancer therapy and biocontrol of fungal infections. ΦOT8 has utility as a powerful functional genomics tool in these bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032797-0
2010-01-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/240.html?itemId=/content/journal/micro/10.1099/mic.0.032797-0&mimeType=html&fmt=ahah

References

  1. Ammann A., Neve H., Geis A., Heller K. J.. 2008; Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis. J Bacteriol190:3083–3087
    [Google Scholar]
  2. Berg G., Roskot N., Steidle A., Eberl L., Zock A., Smalla K.. 2002; Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol68:3328–3338
    [Google Scholar]
  3. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W.. 1987; The isolation and characterisation of (3R,5R)- and (3S,5R)-carbapenem-3-carboxylic acid from Serratia and Erwinia species and their putative biosynthetic role. J Chem Soc Chem Commun21:1623–1625
    [Google Scholar]
  4. Canchaya C., Fournous G., Brüssow H.. 2004; The impact of prophages on bacterial chromosomes. Mol Microbiol53:9–18
    [Google Scholar]
  5. Chen J., Novick R. P.. 2009; Phage-mediated intergeneric transfer of toxin genes. Science323:139–141
    [Google Scholar]
  6. De Lorenzo V., Herrero M., Jakubzik U., Timmis K. N.. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol172:6568–6572
    [Google Scholar]
  7. Demarre G., Guerout A.-M., Matsumoto-Mashimo C., Rowe-Magnus D. A., Marliere P., Mazel D.. 2005; A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncP α) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol156:245–255
    [Google Scholar]
  8. De Vries G. E., Raymond C. K., Ludwig R. A.. 1984; Extension of bacteriophage λ host range: selection, cloning, and characterization of a constitutive λ receptor gene. Proc Natl Acad Sci U S A81:6080–6084
    [Google Scholar]
  9. Enomoto M.. 1966; Genetic studies of paralyzed mutants in Salmonella. I. Genetic fine structure of the mot loci in Salmonella typhimurium. Genetics54:715–726
    [Google Scholar]
  10. Evans T. J., Trauner A., Komitopoulou E., Salmond G. P. C.. 2009; Exploitation of a new flagellatropic phage of Erwinia for positive selection of bacterial mutants attenuated in plant virulence: towards phage therapy. J Appl Microbiol
    [Google Scholar]
  11. Fineran P. C., Everson L., Slater H., Salmond G. P. C.. 2005a; A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology151:3833–3845
    [Google Scholar]
  12. Fineran P. C., Slater H., Everson L., Hughes K., Salmond G. P. C.. 2005b; Biosynthesis of tripyrrole and β-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol56:1495–1517
    [Google Scholar]
  13. Fineran P. C., Williamson N. R., Lilley K. S., Salmond G. P.. 2007; Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. J Bacteriol189:7653–7662
    [Google Scholar]
  14. Ghelardi E., Celandroni F., Salvetti S., Beecher D. J., Gominet M., Lereclus D., Wong A. C. L., Senesi S.. 2002; Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J Bacteriol184:6424–6433
    [Google Scholar]
  15. Gill J. J., Svircev A. M., Smith R., Castle A. J.. 2003; Bacteriophages of Erwinia amylovora. Appl Environ Microbiol69:2133–2138
    [Google Scholar]
  16. Harris A. K., Williamson N. R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H. T., Leeper F. J., Salmond G. P. C.. 2004; The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150:3547–3560
    [Google Scholar]
  17. Harshey R. M.. 1988; The Bacteriophages vol. 1 pp193–234 Edited by Calendar R.. New York: Plenum;
  18. Heller K. J.. 1992; Molecular interaction between bacteriophages and the Gram-negative cell envelope. Arch Microbiol158:235–248
    [Google Scholar]
  19. Hendrix R. W.. 2002; Bacteriophages: evolution of the majority. Theor Popul Biol61:471–480
    [Google Scholar]
  20. Holliday R.. 1956; A new method for the identification of biochemical mutants of micro-organisms. Nature178:987–988
    [Google Scholar]
  21. Hossain M. M., Shibata S., Aizawa S.-I., Tsuyumu S.. 2005; Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol Mol Plant Pathol66:134–143
    [Google Scholar]
  22. Iida S., Streif M. B., Bickle T. A., Werner A.. 1987; Two DNA antirestriction systems of bacteriophages P1, darA, and darB: characterization of darA phages. Virology157:156–166
    [Google Scholar]
  23. Jensen E. C., Schrader H. S., Rieland B., Thompson T. L., Lee K. W., Nickerson K. W., Kokjohn T. A.. 1998; Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol64:575–580
    [Google Scholar]
  24. Jiang S. C., Paul J. H.. 1998; Gene transfer by transduction in the marine environment. Appl Environ Microbiol64:2780–2787
    [Google Scholar]
  25. Kaiser D., Dworkin M.. 1975; Gene transfer to a myxobacterium by Escherichia coli phage P1. Science187:653–654
    [Google Scholar]
  26. Leffers G., Rao V. B.. 1996; A discontinuous headful packaging model for packaging less than headful length DNA molecules by bacteriophage T4. J Mol Biol258:839–850
    [Google Scholar]
  27. Lima-Mendez G., Toussaint A., Leplae R.. 2007; Analysis of the phage sequence space: the benefit of structured information. Virology365:241–249
    [Google Scholar]
  28. Lindberg A. A.. 1973; Bacteriophage receptors. Annu Rev Microbiol27:205–241
    [Google Scholar]
  29. Nguyen M., Marcellus R. C., Roulston A., Watson M., Serfass L., Madiraju S. R. M., Goulet D., Viallet J., Bélec L.. other authors 2007; Small molecule obatoclax (GX15–070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A104:19512–19517
    [Google Scholar]
  30. Palva E. T., Liljeström P., Harayama S.. 1981; Cosmid cloning and transposon mutagenesis in Salmonella typhimurium using phage λ vehicles. Mol Gen Genet181:153–157
    [Google Scholar]
  31. Petty N. K., Foulds I. F., Pradel E., Ewbank J. J., Salmond G. P. C.. 2006; A generalized transducing phage (ΦIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiology152:1701–1708
    [Google Scholar]
  32. Petty N. K., Toribio A. L., Goulding D., Foulds I., Thomson N., Dougan G., Salmond G. P. C.. 2007; A generalized transducing phage for the muring pathogen Citrobacter rodentium. Microbiology153:2984–2988
    [Google Scholar]
  33. Pitt T. L., Gaston M. A.. 1995; Bacteriophage typing. Methods Mol Biol46:15–26
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbr, NY: Cold Spring Harbor Laboratory;
  35. Schade S. Z., Adler J., Ris H.. 1967; How bacteriophage χ attacks motile bacteria. J Virol1:599–609
    [Google Scholar]
  36. Skerker J. M., Shapiro L.. 2000; Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. EMBO J19:3223–3234
    [Google Scholar]
  37. Slater H., Crow M., Everson L., Salmond G. P. C.. 2003; Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol47:303–320
    [Google Scholar]
  38. Smith D. S.. 2005; Development of a positive selection strategy to investigate the regulation of quorum sensing in Erwinia PhD thesis University of Cambridge; UK:
  39. Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P.. 2000; Biosynthesis of carbapenem and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol36:539–556
    [Google Scholar]
  40. Tock M. R., Dryden D. T.. 2005; The biology of restriction and anti-restriction. Curr Opin Microbiol8:466–472
    [Google Scholar]
  41. Wentworth B. B.. 1963; Bacteriophage typing of the staphylococci. Bacteriol Rev27:253–272
    [Google Scholar]
  42. Williamson N. R., Simonsen H. T., Ahmed R. A., Goldet G., Slater H., Woodley L., Leeper F. J., Salmond G. P. C.. 2005; Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3- n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol56:971–989
    [Google Scholar]
  43. Williamson N. R., Fineran P. C., Leeper F. J., Salmond G. P. C.. 2006; The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol4:887–899
    [Google Scholar]
  44. Williamson N. R., Fineran P. C., Ogawa W., Woodley L. R., Salmond G. P. C.. 2008; Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Environ Microbiol10:1202–1217
    [Google Scholar]
  45. Yarmolinsky M. B., Sternberg N.. 1988; The Bacteriophagesvol. 1 pp291–438 Edited by Calendar R.. New York: Plenum;
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032797-0
Loading
/content/journal/micro/10.1099/mic.0.032797-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error