1887

Abstract

Proteolysis is important not only to cell physiology but also to the successful development of biocatalysts. While a wide-variety of signals are known to trigger protein degradation in bacteria and eukaryotes, these mechanisms are poorly understood in archaea, known for their ability to withstand harsh conditions. Here we present a systematic study in which single C-terminal amino acid residues were added to a reporter protein and shown to influence its levels in an archaeal cell. All 20 amino acid residues were examined for their impact on protein levels, using the reporter protein soluble modified red-shifted GFP (smRS-GFP) expressed in the haloarchaeon as a model system. Addition of hydrophobic residues, including Leu, Cys, Met, Phe, Ala, Tyr, Ile and Val, gave the most pronounced reduction in smRS-GFP levels compared with the addition of either neutral or charged hydrophilic residues. In contrast to the altered protein levels, the C-terminal alterations had no influence on smRS-GFP-specific transcript levels, thus revealing that the effect is post-transcriptional.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032995-0
2010-01-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/248.html?itemId=/content/journal/micro/10.1099/mic.0.032995-0&mimeType=html&fmt=ahah

References

  1. Bohley, P. ( 1996; ). Surface hydrophobicity and intracellular degradation of proteins. Biol Chem 377, 425–435.
    [Google Scholar]
  2. Brenneis, M., Hering, O., Lange, C. & Soppa, J. ( 2007; ). Experimental characterization of cis-acting elements important for translation and transcription in halophilic archaea. PLoS Genet 3, e229 [CrossRef]
    [Google Scholar]
  3. Chalfie, M. ( 1995; ). Green fluorescent protein. Photochem Photobiol 62, 651–656.[CrossRef]
    [Google Scholar]
  4. Ciechanover, A. ( 1998; ). The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17, 7151–7160.[CrossRef]
    [Google Scholar]
  5. Cline, S. W., Pfeifer, F. & Doolittle, W. F. ( 1995; ). Transformation of halophilic archaea. In Archaea: a Laboratory Manual, pp. 197–204. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  6. Devoy, A., Soane, T., Welchman, R. & Mayer, R. J. ( 2005; ). The ubiquitin-proteasome system and cancer. Essays Biochem 41, 187–203.[CrossRef]
    [Google Scholar]
  7. Egorova, K. & Antranikian, G. ( 2005; ). Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8, 649–655.[CrossRef]
    [Google Scholar]
  8. Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. ( 1984; ). The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A 81, 140–144.[CrossRef]
    [Google Scholar]
  9. Flynn, J. M., Levchenko, I., Seidel, M., Wickner, S. H., Sauer, R. T. & Baker, T. A. ( 2001; ). Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci U S A 98, 10584–10589.[CrossRef]
    [Google Scholar]
  10. Gerega, A., Rockel, B., Peters, J., Tamura, T., Baumeister, W. & Zwickl, P. ( 2005; ). VAT, the Thermoplasma homolog of mammalian p97/VCP, is an N domain regulated protein unfoldase. J Biol Chem 280, 42856–42862.[CrossRef]
    [Google Scholar]
  11. Gottesman, S. ( 2003; ). Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19, 565–587.[CrossRef]
    [Google Scholar]
  12. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R. T. ( 1998; ). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338–1347.[CrossRef]
    [Google Scholar]
  13. Grune, T., Merker, K., Sandig, G. & Davies, K. J. ( 2003; ). Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305, 709–718.[CrossRef]
    [Google Scholar]
  14. Humbard, M. A., Zhou, G. & Maupin-Furlow, J. A. ( 2009; ). The N-terminal penultimate residue of 20S proteasome α1 influences its Nα-acetylation and protein levels as well as growth rate and stress responses of Haloferax volcanii. J Bacteriol 191, 3794–3803.[CrossRef]
    [Google Scholar]
  15. Jenal, U. & Shapiro, L. ( 1996; ). Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell. EMBO J 15, 2393–2406.
    [Google Scholar]
  16. Kaczowka, S. J. & Maupin-Furlow, J. A. ( 2003; ). Subunit topology of two 20S proteasomes from Haloferax volcanii. J Bacteriol 185, 165–174.[CrossRef]
    [Google Scholar]
  17. Kaczowka, S. J., Reuter, C. J., Talarico, L. A. & Maupin-Furlow, J. A. ( 2005; ). Recombinant production of Zymomonas mobilis pyruvate decarboxylase in a recombinant haloarchaeon, Haloferax volcanii. Archaea 1, 327–334.[CrossRef]
    [Google Scholar]
  18. Keiler, K. C., Shapiro, L. & Williams, K. P. ( 2000; ). tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: a two-piece tmRNA functions in Caulobacter. Proc Natl Acad Sci U S A 97, 7778–7783.[CrossRef]
    [Google Scholar]
  19. Lupas, A. N. & Martin, J. ( 2002; ). AAA proteins. Curr Opin Struct Biol 12, 746–753.[CrossRef]
    [Google Scholar]
  20. Margesin, R. & Schinner, F. ( 2001; ). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83.[CrossRef]
    [Google Scholar]
  21. Mevarech, M., Frolow, F. & Gloss, L. M. ( 2000; ). Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86, 155–164.[CrossRef]
    [Google Scholar]
  22. Navon, A. & Goldberg, A. L. ( 2001; ). Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell 8, 1339–1349.[CrossRef]
    [Google Scholar]
  23. Ogura, T. & Wilkinson, A. J. ( 2001; ). AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 6, 575–597.[CrossRef]
    [Google Scholar]
  24. Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y. & Remington, S. J. ( 1996; ). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.[CrossRef]
    [Google Scholar]
  25. Reuter, C. J. & Maupin-Furlow, J. A. ( 2004; ). Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells using short-lived green fluorescent proteins. Appl Environ Microbiol 70, 7530–7538.[CrossRef]
    [Google Scholar]
  26. Reuter, C. J., Kaczowka, S. J. & Maupin-Furlow, J. A. ( 2004; ). Differential regulation of the PanA and PanB proteasome-activating nucleotidase and 20S proteasomal proteins of the haloarchaeon Haloferax volcanii. J Bacteriol 186, 7763–7772.[CrossRef]
    [Google Scholar]
  27. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  28. Schiraldi, C. & De Rosa, M. ( 2002; ). The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20, 515–521.[CrossRef]
    [Google Scholar]
  29. Sherwood, K. E., Cano, D. J. & Maupin-Furlow, J. A. ( 2009; ). Glycerol-mediated repression of glucose metabolism and glycerol kinase as the sole route of glycerol catabolism in the haloarchaeon Haloferax volcanii. J Bacteriol 191, 4307–4315.[CrossRef]
    [Google Scholar]
  30. Smith, D. M., Kafri, G., Cheng, Y., Ng, D., Walz, T. & Goldberg, A. L. ( 2005; ). ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20, 687–698.[CrossRef]
    [Google Scholar]
  31. Soppa, J. ( 2006; ). From genomes to function: haloarchaea as model organisms. Microbiology 152, 585–590.[CrossRef]
    [Google Scholar]
  32. Varshavsky, A., Turner, G., Du, F. & Xie, Y. ( 2000; ). The ubiquitin system and the N-end rule pathway. Biol Chem 381, 779–789.
    [Google Scholar]
  33. Wilson, H. L., Ou, M. S., Aldrich, H. C. & Maupin-Furlow, J. A. ( 2000; ). Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome. J Bacteriol 182, 1680–1692.[CrossRef]
    [Google Scholar]
  34. Withey, J. H. & Friedman, D. I. ( 2003; ). A salvage pathway for protein synthesis: tmRNA and trans-translation. Annu Rev Microbiol 57, 101–123.[CrossRef]
    [Google Scholar]
  35. Wolf, D. H. & Hilt, W. ( 2004; ). The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695, 19–31.[CrossRef]
    [Google Scholar]
  36. Yang, F., Moss, L. G. & Phillips, G. N., Jr ( 1996; ). The molecular structure of green fluorescent protein. Nat Biotechnol 14, 1246–1251.[CrossRef]
    [Google Scholar]
  37. Zhang, G., Gurtu, V. & Kain, S. R. ( 1996; ). An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227, 707–711.[CrossRef]
    [Google Scholar]
  38. Zhou, G. Y., Kowalczyk, D., Humbard, M. A., Rohatgi, S. & Maupin-Furlow, J. A. ( 2008; ). Proteasomal components required for cell growth and stress responses in the haloarchaeon Haloferax volcanii. J Bacteriol 190, 8096–8105.[CrossRef]
    [Google Scholar]
  39. Zwickl, P., Ng, D., Woo, K. M., Klenk, H.-P. & Goldberg, A. L. ( 1999; ). An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20S proteasomes. J Biol Chem 274, 26008–26014.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032995-0
Loading
/content/journal/micro/10.1099/mic.0.032995-0
Loading

Data & Media loading...

Supplements

Adobe PDF - mic032995_suppl_fig_legends.pdf 

PDF

Adobe PDF - mic030506_suppl_figs.pdf 

PDF

Adobe PDF - mic032995_table_S1.pdf 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error