1887

Abstract

A putative prenyltransferase gene has been identified in the gene cluster encoding the biosynthesis of the phytotoxin sirodesmin PL in . The gene product was found to comprise 449 aa, with a molecular mass of 51 kDa. In this study, the coding region of was amplified by PCR from cDNA, cloned into pQE70, and overexpressed in . The overproduced protein was purified to apparent homogeneity, and characterized biochemically. The dimeric recombinant SirD was found to catalyse the -prenylation of -Tyr in the presence of dimethylallyl diphosphate; this was demonstrated unequivocally by isolation and structural elucidation of the enzymic product. Therefore, SirD catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL. values for -Tyr and dimethylallyl diphosphate were determined as 0.13 and 0.17 mM, respectively. Interestingly, SirD was found to share significant sequence similarity with indole prenyltransferases, which catalyse prenyl transfer reactions onto different positions of indole rings. In contrast to indole prenyltransferases, which accept indole derivatives, but not Tyr or structures derived thereof, as substrates, SirD also prenylated -Trp, resulting in the formation of 7-dimethylallyltryptophan. A value of 0.23 mM was determined for -Trp. Turnover numbers of 1.0 and 0.06 S were calculated for -Tyr and -Trp, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033886-0
2010-01-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/278.html?itemId=/content/journal/micro/10.1099/mic.0.033886-0&mimeType=html&fmt=ahah

References

  1. Boudart G. 1989; Antibacterial activity of sirodesmin PL phytotoxin: application to the selection of phytotoxin-deficient mutants. Appl Environ Microbiol 55:1555–1559
    [Google Scholar]
  2. Bu'Lock J. D., Clough L. E. 1992; Sirodesmin biosynthesis. Aust J Chem 45:39–45
    [Google Scholar]
  3. Chu M., Mierzwa R., Truumees I., Gentile F., Patel M., Gullo V., Chan T-M., Puar M. S. 1993; Two novel diketopiperazines isolated from the fungus Tolypocladium sp. Tetrahedron Lett 34:7537–7540
    [Google Scholar]
  4. Ding Y., Williams R. M., Sherman D. H. 2008; Molecular analysis of a 4-dimethylallyltryptophan synthase from Malbranchea aurantiaca. J Biol Chem 283:16068–16076
    [Google Scholar]
  5. Elliott C. E., Gardiner D. M., Thomas G., Cozijnsen A., Van de Wouw A., Howlett B. J. 2007; Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol Plant Pathol 8:791–802
    [Google Scholar]
  6. Ferezou J. P., Riche C., Quesneau-Thierry A., Pascard-Billy C., Barbier M., Bousquet J. F., Boudart G. 1977; Structures de deux toxines isolées des cultures de champignon Phoma lingam Tode: la sirodesmine PL et la desacetylsirodesmine PL. Nouv J Chim 1:327–334
    [Google Scholar]
  7. Ferezou J.-P., Quesneau-Thierry A., Servy C., Zissmann E., Barbier M. 1980; Sirodesmin PL biosynthesis in Phoma lingam Tode. J Chem Soc Perkin Trans 1:1739–1746
    [Google Scholar]
  8. Fox E. M., Howlett B. J. 2008; Biosynthetic gene clusters for epipolythiodioxopiperazines in filamentous fungi. Mycol Res 112:162–169
    [Google Scholar]
  9. Gardiner D. M., Howlett B. J. 2005; Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 248:241–248
    [Google Scholar]
  10. Gardiner D. M., Cozijnsen A. J., Wilson L. M., Pedras M. S., Howlett B. J. 2004; The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53:1307–1318
    [Google Scholar]
  11. Gardiner D. M., Waring P., Howlett B. J. 2005; The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151:1021–1032
    [Google Scholar]
  12. Glister G. A., Williams T. I. 1944; Production of gliotoxin by Aspergillus fumigatus mut. helvola Yuill. Nature 153:651
    [Google Scholar]
  13. Grundmann A., Li S.-M. 2005; Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology 151:2199–2207
    [Google Scholar]
  14. Grundmann A., Kuznetsova T., Afiyatullov S. S., Li S.-M. 2008; FtmPT2, an N-prenyltransferase from Aspergillus fumigatus, catalyses the last step in the biosynthesis of fumitremorgin B. ChemBioChem 9:2059–2063
    [Google Scholar]
  15. Haagen Y., Unsöld I., Westrich L., Gust B., Richard S. B., Noel J. P., Heide L. 2007; A soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates. FEBS Lett 581:2889–2893
    [Google Scholar]
  16. Hoffmeister D., Keller N. P. 2007; Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416
    [Google Scholar]
  17. Howlett B. J., Idnurm A., Pedras M. S. 2001; Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 33:1–14
    [Google Scholar]
  18. Kremer A., Li S.-M. 2008; Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives. Appl Microbiol Biotechnol 79:951–961
    [Google Scholar]
  19. Kremer A., Westrich L., Li S.-M. 2007; A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization. Microbiology 153:3409–3416
    [Google Scholar]
  20. Kumano T., Richard S. B., Noel J. P., Nishiyama M., Kuzuyama T. 2008; Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities. Bioorg Med Chem 16:8117–8126
    [Google Scholar]
  21. Kuzuyama T., Noel J. P., Richard S. B. 2005; Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435:983–987
    [Google Scholar]
  22. Kwon-Chung K. J., Sugui J. A. 2009; What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus?. Med Mycol 47:Suppl 1S97–S103
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Li S.-M. 2009a; Applications of dimethylallyltryptophan synthases and other indole prenyltransferases for structural modification of natural products. Appl Microbiol Biotechnol 84:631–639
    [Google Scholar]
  25. Li S.-M. 2009b; Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry 70:1746–1757
    [Google Scholar]
  26. Macone A., Lendaro E., Comandini A., Rovardi I., Matarese R. M., Carraturo A., Bonamore A. 2009; Chromane derivatives of small aromatic molecules: chemoenzymatic synthesis and growth inhibitory activity on human tumor cell line LoVo WT. Bioorg Med Chem 17:6003–6007
    [Google Scholar]
  27. Metzger U., Schall C., Zocher G., Unsold I., Stec E., Li S.-M., Heide L., Stehle T. 2009; The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci U S A 106:14309–14314
    [Google Scholar]
  28. Mullbacher A., Waring P., Tiwari-Palni U., Eichner R. D. 1986; Structural relationship of epipolythiodioxopiperazines and their immunomodulating activity. Mol Immunol 23:231–235
    [Google Scholar]
  29. Nielsen K. F., Smedsgaard J. 2003; Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136
    [Google Scholar]
  30. Ohara K., Muroya A., Fukushima N., Yazaki K. 2009; Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid. Biochem J 421:231–241
    [Google Scholar]
  31. Ruan H.-L., Yin W.-B., Wu J.-Z., Li S.-M. 2008; Reinvestigation of a cyclic dipeptide N-prenyltransferase reveals rearrangement of N-1 prenylated indole derivatives. ChemBioChem 9:1044–1047
    [Google Scholar]
  32. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. Stec E., Steffan N., Kremer A., Zou H., Zheng X., Li S.-M. 2008; Two lysine residues are responsible for the enzymatic activities of indole prenyltransferases from fungi. ChemBioChem 9:2055–2058
    [Google Scholar]
  34. Steffan N., Unsöld I. A., Li S.-M. 2007; Chemoenzymatic synthesis of prenylated indole derivatives by using a 4-dimethylallyltryptophan synthase from Aspergillus fumigatus. ChemBioChem 8:1298–1307
    [Google Scholar]
  35. Steffan N., Grundmann A., Yin W.-B., Kremer A., Li S.-M. 2009; Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives. Curr Med Chem 16:218–231
    [Google Scholar]
  36. Unsöld I. A., Li S.-M. 2005; Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499–1505
    [Google Scholar]
  37. Unsöld I. A., Li S.-M. 2006; Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification and characterization of fumigaclavine C synthase FgaPT1. ChemBioChem 7:158–164
    [Google Scholar]
  38. Woodside A. B., Huang Z., Poulter C. D. 1988; Triammonium germanyl diphosphate. Org Synth 66:211–215
    [Google Scholar]
  39. Yin W.-B., Ruan H.-L., Westrich L., Grundmann A., Li S.-M. 2007; CdpNPT, an N-prenyltransferase from Aspergillus fumigatus: overproduction, purification and biochemical characterisation. ChemBioChem 8:1154–1161
    [Google Scholar]
  40. Yin W.-B., Cheng J., Li S.-M. 2009; Stereospecific synthesis of aszonalenins by using two recombinant prenyltransferases. Org Biomol Chem 7:2202–2207
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.033886-0
Loading
/content/journal/micro/10.1099/mic.0.033886-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error