1887

Abstract

Acyl carrier proteins (ACPs) are required for the transfer of acyl intermediates during fatty acid and polyketide syntheses. In 1021 there are five known ACPs: AcpP, NodF, AcpXL, the ACP domain in RkpA and SMb20651. The genome sequence of 1021 also reveals the ORF SMc01553, annotated as a putative ACP. is part of a 6.6 kb DNA region that is duplicated in the chromosome and in the pSymb plasmid, the result of a recent duplication event. SMc01553 overexpressed in was labelled with [H]-alanine, a biosynthetic building block of the 4′-phosphopantetheine prosthetic group of ACPs. The purified SMc01553 was modified with 4′-phosphopantetheine in the presence of holo-ACP synthase, and this modification resulted in a major conformational change of the protein structure, since the holo-form runs faster in native PAGE than the apo-form. SMc01553 could not be loaded with a malonyl group by malonyl-CoA-ACP transacylase from . Using RT-PCR we could show the presence of mRNA for SMc01553 and of the duplicated ORF SMb22007 in cultures of . However, a mutant in which the two duplicated regions were deleted did not show any different phenotype with respect to the wild-type in the free-living or symbiotic lifestyle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033480-0
2010-01-01
2020-02-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/230.html?itemId=/content/journal/micro/10.1099/mic.0.033480-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäfer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Ardourel M., Demont N., Debellé F., Maillet F., de Billy F., Promé J. C., Dénarié J., Truchet G.. 1994; Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell6:1357–1374
    [Google Scholar]
  3. Barnett M. J., Toman C. J., Fisher R. F., Long S. R.. 2004; A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci U S A101:16636–16641
    [Google Scholar]
  4. Becker A., Fraysse N., Sharypova L.. 2005; Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. Mol Plant Microbe Interact18:899–905
    [Google Scholar]
  5. Beringer J. E.. 1974; R factor transfer in Rhizobium leguminosarum. J Gen Microbiol84:188–198
    [Google Scholar]
  6. Brozek K. A., Carlson R. W., Raetz C. R.. 1996; A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium. J Biol Chem271:32126–32136
    [Google Scholar]
  7. Burris R. H.. 1972; Nitrogen fixation assay–methods and techniques. Methods Enzymol24:415–431
    [Google Scholar]
  8. Byers D. M., Gong H.. 2007; Acyl carrier protein: structure–function relationships in a conserved multifunctional protein family. Biochem Cell Biol85:649–662
    [Google Scholar]
  9. Chan Y. A., Podevels A. M., Kevany B. M., Thomas M. G.. 2009; Biosynthesis of polyketide synthase extender units. Nat Prod Rep26:90–114
    [Google Scholar]
  10. Dulley J. R., Grieve P. A.. 1975; A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem64:136–141
    [Google Scholar]
  11. Epple G., van der Drift K. M. G. M., Thomas-Oates J., Geiger O.. 1998; Characterization of a novel acyl carrier protein, RkpF, encoded by an operon involved in capsular polysaccharide biosynthesis in Sinorhizobium meliloti. J Bacteriol180:4950–4954
    [Google Scholar]
  12. Ferguson G. P., Roop R. M. II, Walker G. C.. 2002; Deficiency of Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with the alteration of cell envelope. J Bacteriol184:5625–5632
    [Google Scholar]
  13. Ferguson G. P., Datta A., Carlson R. W., Walker G. C.. 2005; Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol56:68–80
    [Google Scholar]
  14. Florova G., Kazanina G., Reynolds K. A.. 2002; Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity. Biochemistry41:10462–10471
    [Google Scholar]
  15. Flugel R. S., Hwangbo Y., Lambalot R. H., Cronan J. E., Walsh C. T.. 2000; Holo-(acyl carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J Biol Chem275:959–978
    [Google Scholar]
  16. Galibert F., Finan T. M., Long S. R., Pühler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A.. other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti. Science293:668–672
    [Google Scholar]
  17. Geiger O., López-Lara I. M.. 2002; Rhizobial acyl carrier proteins and their roles in the formation of bacterial cell surface components that are required for the development of nitrogen-fixing root nodules on legume hosts. FEMS Microbiol Lett208:153–162
    [Google Scholar]
  18. Geiger O., Spaink H. P., Kennedy E. P.. 1991; Isolation of the Rhizobium leguminosarum NodF nodulation protein: NodF carries a 4′-phosphopantetheine prosthetic group. J Bacteriol173:2872–2878
    [Google Scholar]
  19. Guo X., Flores M., Mavingui P., Fuentes S. I., Hernández G., Dávila G., Palacios R.. 2003; Natural genomic design in Sinorhizobium meliloti: novel genomic architectures. Genome Res13:1810–1817
    [Google Scholar]
  20. Haag A. F., Wehmeier S., Beck S., Marlow V. L., Fletcher V., James E. K., Ferguson G. P.. 2009; The Sinorhizobium meliloti LpxXL and AcpXL proteins play important roles in bacteroid development within alfalfa. J Bacteriol191:4681–4686
    [Google Scholar]
  21. Hofmann K.. 2000; A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem Sci25:111–112
    [Google Scholar]
  22. Jackowski S., Rock C. O.. 1983; Ratio of active to inactive forms of acyl carrier protein in Escherichia coli. J Biol Chem258:15186–15191
    [Google Scholar]
  23. Lambalot R. H., Gehring A. M., Flugel R. S., Zuber P., LaCelle M., Marahiel M. A., Reid R., Khosla C., Walsh C. T.. 1996; A new enzyme superfamily: the phosphopantetheinyl transferases. Chem Biol3:923–936
    [Google Scholar]
  24. López-Lara I. M., Geiger O.. 2000; Expression and purification of four different acyl carrier proteins. Microbiology146:839–849
    [Google Scholar]
  25. Miller J. H.. 1972; Experiments in Molecular Genetics. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Olivares J., Casadesus J., Bedmar E. J.. 1980; Method for testing degree of infectivity of Rhizobium meliloti strains. Appl Environ Microbiol39:967–970
    [Google Scholar]
  27. Østeras M., Boncompagni E., Vincent N., Poggi M. C., Le Rudulier D.. 1998; Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline- O-sulfate is metabolised into glycine betaine. Proc Natl Acad Sci U S A95:11394–11399
    [Google Scholar]
  28. Ramos-Vega A. L., Dávila-Martínez Y., Sohlenkamp C., Contreras-Martínez S., Encarnación S., Geiger O., López-Lara I. M.. 2009; SMb20651 is another acyl carrier protein from Sinorhizobium meliloti. Microbiology155:257–267
    [Google Scholar]
  29. Rawlings M., Cronan J. E.. 1992; The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J Biol Chem267:5751–5754
    [Google Scholar]
  30. Reuhs B. L., Geller D. P., Kim J. S., Fox J. E., Kolli V. S., Pueppke S. G.. 1998; Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol64:4930–4938
    [Google Scholar]
  31. Robertsen B. K., Aman P., Darvill A. G., McNeil M., Albersheim P.. 1981; Host–symbiont interactions. V. The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. Plant Physiol67:389–400
    [Google Scholar]
  32. Rock C. O.. 2008; Fatty acids and phospholipids metabolism in prokaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes, 5th edn. pp59–96 Edited by Vance D. E., Vance J. E. Amsterdam: Elsevier;
  33. Sambrook J., Russell D. R.. 2001; Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene145:69–73
    [Google Scholar]
  35. Schägger H., von Jagow G.. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem166:368–379
    [Google Scholar]
  36. Schweizer H. D.. 1993; Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques15:831–834
    [Google Scholar]
  37. Sharypova L. A., Niehaus K., Scheidle H., Holst O., Becker A.. 2003; Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. J Biol Chem278:12946–12954
    [Google Scholar]
  38. Sherwood M. T.. 1970; Improved synthetic medium for the growth of Rhizobium. J Appl Bacteriol33:708–713
    [Google Scholar]
  39. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. BioTechnology1:784–791
    [Google Scholar]
  40. Sohlenkamp C., de Rudder K. E., Geiger O.. 2004; Phosphatidylethanolamine is not essential for growth of Sinorhizobium meliloti on complex culture media. J Bacteriol186:1667–1677
    [Google Scholar]
  41. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. 1990; Use of a T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol185:60–89
    [Google Scholar]
  42. Sun Y., Hong H., Gillies F., Spencer J. B., Leadlay P. F.. 2008; Glyceryl- S-acyl carrier protein as an intermediate in the biosynthesis of tetronate antibiotics. ChemBioChem9:150–156
    [Google Scholar]
  43. Wu K., Chung L., Revill W. P., Katz L., Reeves C. D.. 2000; The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene251:81–90
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033480-0
Loading
/content/journal/micro/10.1099/mic.0.033480-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error